RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1971, Volume 85(127), Number 4(8), Pages 553–562 (Mi msb3277)  

This article is cited in 2 scientific papers (total in 2 papers)

Representation of Hermitian operators with improper scale subspace

Yu. L. Shmul'yan


Abstract: The theory of representation of Hermitian operators, constructed by M. G. Krein (UMZh, 1, 2, 1949, 3–66), is carried over to the case where the scale subspace may contain improper elements. Defect numbers of the operator are possibly infinite, and its domain may fail to be dense.
Bibliography: 11 titles.

Full text: PDF file (993 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1971, 14:4, 554–564

Bibliographic databases:

UDC: 517.43
MSC: Primary 47B15; Secondary 47A10, 47A65
Received: 24.09.1970

Citation: Yu. L. Shmul'yan, “Representation of Hermitian operators with improper scale subspace”, Mat. Sb. (N.S.), 85(127):4(8) (1971), 553–562; Math. USSR-Sb., 14:4 (1971), 554–564

Citation in format AMSBIB
\Bibitem{Shm71}
\by Yu.~L.~Shmul'yan
\paper Representation of Hermitian operators with improper scale subspace
\jour Mat. Sb. (N.S.)
\yr 1971
\vol 85(127)
\issue 4(8)
\pages 553--562
\mathnet{http://mi.mathnet.ru/msb3277}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=301545}
\zmath{https://zbmath.org/?q=an:0261.47015}
\transl
\jour Math. USSR-Sb.
\yr 1971
\vol 14
\issue 4
\pages 554--564
\crossref{https://doi.org/10.1070/SM1971v014n04ABEH002820}


Linking options:
  • http://mi.mathnet.ru/eng/msb3277
  • http://mi.mathnet.ru/eng/msb/v127/i4/p553

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. È. R. Tsekanovskii, Yu. L. Shmul'yan, “The theory of bi-extensions of operators on rigged Hilbert spaces. Unbounded operator colligations and characteristic functions”, Russian Math. Surveys, 32:5 (1977), 73–131  mathnet  crossref  mathscinet  zmath
    2. Vadim Mogilevskii, “On characteristic matrices and eigenfunction expansions of two singular point symmetric systems”, Math. Nachr, 2014, n/a  crossref  mathscinet
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:241
    Full text:69
    References:24

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020