RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1973, Volume 91(133), Number 3(7), Pages 367–389 (Mi msb3301)  

On a class of globally hypoelliptic operators

A. V. Fursikov


Abstract: We consider an operator $A$ which is defined on an $(n+1)$-dimensional manifold $\Omega$ and which is elliptic everywhere outside an $n$-dimensional submanifold $\Gamma$. If $(x)$ represents the local coordinates in $\Gamma$ and $t$ is the distance to $\Gamma$, then in the coordinates $(x,t)$ the operator $A$ is of the form
$$ Au=\sum_{|\beta|+l\leqslant m}a_{\beta l}(x,t)t^{lq}D^\beta_xD^l_tu, $$
where $q>1$ is an integer. We present a necessary and sufficient condition for infinite differentiability in a neighborhood of $\Gamma$ of the solution of $Au=f$ if $f$ is infinitely differentiable in a neighborhood of $\Gamma$.
Bibliography: 16 titles.

Full text: PDF file (1944 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1973, 20:3, 383–405

Bibliographic databases:

UDC: 517.944
MSC: Primary 58G99, 35B99, 35H05; Secondary 58G15
Received: 29.06.1972

Citation: A. V. Fursikov, “On a class of globally hypoelliptic operators”, Mat. Sb. (N.S.), 91(133):3(7) (1973), 367–389; Math. USSR-Sb., 20:3 (1973), 383–405

Citation in format AMSBIB
\Bibitem{Fur73}
\by A.~V.~Fursikov
\paper On~a~class of globally hypoelliptic operators
\jour Mat. Sb. (N.S.)
\yr 1973
\vol 91(133)
\issue 3(7)
\pages 367--389
\mathnet{http://mi.mathnet.ru/msb3301}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=330743}
\zmath{https://zbmath.org/?q=an:0299.35020}
\transl
\jour Math. USSR-Sb.
\yr 1973
\vol 20
\issue 3
\pages 383--405
\crossref{https://doi.org/10.1070/SM1973v020n03ABEH001881}


Linking options:
  • http://mi.mathnet.ru/eng/msb3301
  • http://mi.mathnet.ru/eng/msb/v133/i3/p367

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:171
    Full text:68
    References:48
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020