RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1973, Volume 91(133), Number 4(8), Pages 537–553 (Mi msb3321)  

Integrability of trigonometric series. The estimation of the integral modulus of continuity

S. A. Telyakovskii


Abstract: Let $a_m$ tend to zero and let the quantities
\begin{align*} B_n&=\sum_{m=1}^n(\frac mn)^k|\Delta a_m|+\sum_{m=n+1}^\infty|\Delta a_m|+
&\qquad+\sum_{m=2}^n(\frac mn)^k|\sum_{i=1}^{[m/2]}\frac{\Delta a_{m-i}-\Delta a_{m+i}}i|+\sum_{m=n+1}^\infty|\sum_{i=1}^{[m/2]}\frac{\Delta a_{m-i}-\Delta a_{m+i}}i|. \end{align*}
be finite. We put $f(x)=\frac{a_0}2+\sum_{m=1}^\infty a_m\cos mx$ and $g(x)=\sum_{m=1}^\infty a_m\sin mx$.
It is shown that the integral modulus of continuity of $k$th order for the function $f$ satisfies the estimate $\omega_k(f,\frac1n)_L=O(B_n)$, and that if the series $\sum\frac{|a_m|}m$, converges then
$$ \omega_k(g,\frac1n)_L=\frac{2^k}\pi\sum_{m=n}^\infty\frac{|a_m|}m+O(B_n). $$

Bibliography: 10 titles.

Full text: PDF file (991 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1973, 20:4, 557–573

Bibliographic databases:

UDC: 517.522.3
MSC: 26A15, 42A16
Received: 27.12.1972

Citation: S. A. Telyakovskii, “Integrability of trigonometric series. The estimation of the integral modulus of continuity”, Mat. Sb. (N.S.), 91(133):4(8) (1973), 537–553; Math. USSR-Sb., 20:4 (1973), 557–573

Citation in format AMSBIB
\Bibitem{Tel73}
\by S.~A.~Telyakovskii
\paper Integrability of trigonometric series. The estimation of the integral modulus of continuity
\jour Mat. Sb. (N.S.)
\yr 1973
\vol 91(133)
\issue 4(8)
\pages 537--553
\mathnet{http://mi.mathnet.ru/msb3321}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=330888}
\zmath{https://zbmath.org/?q=an:0279.42005}
\transl
\jour Math. USSR-Sb.
\yr 1973
\vol 20
\issue 4
\pages 557--573
\crossref{https://doi.org/10.1070/SM1973v020n04ABEH001982}


Linking options:
  • http://mi.mathnet.ru/eng/msb3321
  • http://mi.mathnet.ru/eng/msb/v133/i4/p537

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:328
    Full text:90
    References:26

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020