RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 1995, Volume 186, Number 5, Pages 3–34 (Mi msb34)  

This article is cited in 8 scientific papers (total in 8 papers)

Polynomials generated by a three-term recurrence relation with asymptotically periodic complex coefficients

D. Barriosa, G. L. Lopesb, E. Torranoa

a University of the Basque Country
b Carlos III University of Madrid

Abstract: In a previous paper of the authors the location of zeros of polynomials generated by a three-term recurrence relation with complex coefficients satisfying rather general conditions was studied. In particular, it was proved there that when these coefficients have limits in the complex plane, there are asymptotics of the ratio as in the Nevai–Blumenthal class of orthogonal polynomials. In this paper the case of asymptotically periodic recurrence coefficients is studied and the results known for the case of real recurrence coefficients are extended. Applications to rational approximation and continued fractions are presented.

Full text: PDF file (2592 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 1995, 186:5, 629–659

Bibliographic databases:

UDC: 517.5
MSC: 30E10, 30B70, 41A21, 42C05
Received: 11.07.1994

Citation: D. Barrios, G. L. Lopes, E. Torrano, “Polynomials generated by a three-term recurrence relation with asymptotically periodic complex coefficients”, Mat. Sb., 186:5 (1995), 3–34; Sb. Math., 186:5 (1995), 629–659

Citation in format AMSBIB
\Bibitem{BarLopTor95}
\by D.~Barrios, G.~L.~Lopes, E.~Torrano
\paper Polynomials generated by a~three-term recurrence relation with asymptotically periodic complex coefficients
\jour Mat. Sb.
\yr 1995
\vol 186
\issue 5
\pages 3--34
\mathnet{http://mi.mathnet.ru/msb34}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1341082}
\zmath{https://zbmath.org/?q=an:0855.41007}
\transl
\jour Sb. Math.
\yr 1995
\vol 186
\issue 5
\pages 629--659
\crossref{https://doi.org/10.1070/SM1995v186n05ABEH000034}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1995TC19700001}


Linking options:
  • http://mi.mathnet.ru/eng/msb34
  • http://mi.mathnet.ru/eng/msb/v186/i5/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Bernhard Beckermann, “On the Convergence of Bounded J-Fractions on the Resolvent Set of the Corresponding Second Order Difference Operator”, Journal of Approximation Theory, 99:2 (1999), 369  crossref
    2. Lubinsky, DS, “Asymptotics of orthogonal polynomials: Some old, some new, some identities”, Acta Applicandae Mathematicae, 61:1–3 (2000), 207  crossref  mathscinet  zmath  isi  elib
    3. A.Almendral Vázquez, “The Spectrum of a Periodic Complex Jacobi Matrix Revisited”, Journal of Approximation Theory, 105:2 (2000), 344  crossref
    4. Beckermann, B, “Complex Jacobi matrices”, Journal of Computational and Applied Mathematics, 127:1–2 (2001), 17  crossref  mathscinet  zmath  isi  elib
    5. Peherstorfer, F, “Inverse images of polynomial mappings and polynomials orthogonal on them”, Journal of Computational and Applied Mathematics, 153:1–2 (2003), 371  crossref  mathscinet  zmath  isi  elib
    6. Baratchart, L, “Multipoint Pade approximants to complex Cauchy transforms with polar singularities”, Journal of Approximation Theory, 156:2 (2009), 187  crossref  mathscinet  zmath  isi
    7. de la Calle Ysern B., “A Walk through Approximation Theory”, Recent Trends in Orthogonal Polynomials and Approximation Theory, Contemporary Mathematics, 507, 2010, 25–86  crossref  isi
    8. V. V. Borzov, E. V. Damaskinsky, “The discrete spectrum of Jacobi matrix related to recurrence relations with periodic coefficients”, J. Math. Sci. (N. Y.), 213:5 (2016), 694–705  mathnet  crossref  mathscinet
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:259
    Full text:64
    References:36
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019