RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1975, Volume 96(138), Number 4, Pages 584–593 (Mi msb3410)  

This article is cited in 4 scientific papers (total in 4 papers)

On the connection of the eigenvalues of Hecke operators and the Fourier coefficients of eigenfunctions for Siegel's modular forms of genus $n$

N. A. Zharkovskaya


Abstract: Let $f(z)=\sum_{N\geqslant0}a(N)\exp2\pi i\sigma(NZ)$ be Siegel's modular form of genus $n$ which is an eigenfunction for all operators in the $p$-component of a Hecke ring; in particular, $T_{p^\delta}f(Z)=\lambda_f(p^\delta)f(Z)$. This paper examines the series $\sum_{\delta=0}^\infty a(p^\delta N)t^\delta$ ($p$ does not divide $N$). It is proved that each such series is a rational function, where the degree of the numerator of this function does not exceed $2^n-2$ and the denominator coincides with the denominator of the series $\sum_{\delta=0}^\infty \lambda_f(p^\delta)t^\delta$.
Bibliography: 6 titles.

Full text: PDF file (746 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1975, 25:4, 549–557

Bibliographic databases:

UDC: 517.863
MSC: 10D20, 42A16
Received: 15.07.1974

Citation: N. A. Zharkovskaya, “On the connection of the eigenvalues of Hecke operators and the Fourier coefficients of eigenfunctions for Siegel's modular forms of genus $n$”, Mat. Sb. (N.S.), 96(138):4 (1975), 584–593; Math. USSR-Sb., 25:4 (1975), 549–557

Citation in format AMSBIB
\Bibitem{Zha75}
\by N.~A.~Zharkovskaya
\paper On~the connection of the eigenvalues of~Hecke operators and the Fourier coefficients of eigenfunctions for Siegel's modular forms of genus~$n$
\jour Mat. Sb. (N.S.)
\yr 1975
\vol 96(138)
\issue 4
\pages 584--593
\mathnet{http://mi.mathnet.ru/msb3410}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=379383}
\zmath{https://zbmath.org/?q=an:0313.10028}
\transl
\jour Math. USSR-Sb.
\yr 1975
\vol 25
\issue 4
\pages 549--557
\crossref{https://doi.org/10.1070/SM1975v025n04ABEH002462}


Linking options:
  • http://mi.mathnet.ru/eng/msb3410
  • http://mi.mathnet.ru/eng/msb/v138/i4/p584

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. N. Andrianov, “On factorization of Hecke polynomials for the sympletic group of genus $n$”, Math. USSR-Sb., 33:3 (1977), 343–373  mathnet  crossref  mathscinet  zmath  isi
    2. Shin-ichiro Mizumoto, “On integrality of Eisenstein liftings”, manuscripta math, 90:1 (1996), 267  crossref  mathscinet  zmath  isi
    3. Stefan Breulmann, Winfried Kohnen, “On hecke eigenforms of degree n”, Abh Math Semin Univ Hambg, 70:1 (2000), 119  crossref  mathscinet
    4. H. Katsurada, “Euler factor of a certain Dirichlet series attached to Siegel Eisenstein Series”, Abh Math Semin Univ Hambg, 71:1 (2001), 81  crossref  mathscinet  zmath
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:266
    Full text:66
    References:33

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020