RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1975, Volume 97(139), Number 1(5), Pages 77–93 (Mi msb3485)  

This article is cited in 4 scientific papers (total in 4 papers)

Calculating losses in scattering problems

B. S. Pavlov


Abstract: In this article we solve the problem about the calculation of losses in a scattering problem with “Lax” and “non-Lax” channels. For the initial scattering matrix we consider the scattering matrix of the basic operator of the problem with respect to a simple unperturbed operator, which acts in a distinguished subspace (a Lax channel) that is the orthogonal sum of the incoming and outgoing subspaces. It turns out that this scattering matrix is nonunitary when the basic space contains other channels besides the distinguished one, including non-Lax channels. The concept of losses is connected with the fact that the scattering matrix is nonunitary. We calculate the losses by constructing in the orthogonal complement of a Lax channel a new selfadjoint operator, which with the original unperturbed operator forms a modified unperturbed operator. The latter has a unitary scattering matrix with respect to the basic operator of the problem. We explain the significance of the elements of the new scattering matrix that include the original matrix.
Bibliography: 9 titles.

Full text: PDF file (1707 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1975, 26:1, 71–87

Bibliographic databases:

UDC: 513.88
MSC: Primary 47A40; Secondary 47B44, 81A48
Received: 14.05.1974

Citation: B. S. Pavlov, “Calculating losses in scattering problems”, Mat. Sb. (N.S.), 97(139):1(5) (1975), 77–93; Math. USSR-Sb., 26:1 (1975), 71–87

Citation in format AMSBIB
\Bibitem{Pav75}
\by B.~S.~Pavlov
\paper Calculating losses in scattering problems
\jour Mat. Sb. (N.S.)
\yr 1975
\vol 97(139)
\issue 1(5)
\pages 77--93
\mathnet{http://mi.mathnet.ru/msb3485}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=385605}
\zmath{https://zbmath.org/?q=an:0325.47007}
\transl
\jour Math. USSR-Sb.
\yr 1975
\vol 26
\issue 1
\pages 71--87
\crossref{https://doi.org/10.1070/SM1975v026n01ABEH002470}


Linking options:
  • http://mi.mathnet.ru/eng/msb3485
  • http://mi.mathnet.ru/eng/msb/v139/i1/p77

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Rybkin, “The spectral shift function for a dissipative and a selfadjoint operator, and trace formulas for resonances”, Math. USSR-Sb., 53:2 (1986), 421–431  mathnet  crossref  mathscinet  zmath
    2. Rybkin A., “The Trace Formula for Dissipative and Self-Adjoint Operators - Spectral Identities for Resonances”, no. 4, 1984, 97–99  mathscinet  isi
    3. Neidhardt H., “On the Inverse Problem of a Dissipative Scattering-Theory .3.”, Math. Nachr., 148 (1990), 229–242  crossref  mathscinet  zmath  isi
    4. A. V. Rybkin, “The spectral shift function, the characteristic function of a contraction, and a generalized integral”, Russian Acad. Sci. Sb. Math., 83:1 (1995), 237–281  mathnet  crossref  mathscinet  zmath  isi
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:166
    Full text:60
    References:22

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020