|
On rings radical over commutative subrings
A. I. Likhtman
Abstract:
The following theorem is proved. If a ring $R$ is radical over a commutative subring $K$, then all the nilpotent elements of $R$ generate a null-ideal $T$ for which the corresponding factor ring is commutative. An affirmative answer is thus provided for a question raised by Faith.
Bibliography: 5 titles.
Full text:
PDF file (1199 kB)
References:
PDF file
HTML file
English version:
Mathematics of the USSR-Sbornik, 1970, 12:4, 511–520
Bibliographic databases:
UDC:
519.48
MSC: 13A10, 16N40, 16N20, 16N60 Received: 09.12.1969
Citation:
A. I. Likhtman, “On rings radical over commutative subrings”, Mat. Sb. (N.S.), 83(125):4(12) (1970), 513–523; Math. USSR-Sb., 12:4 (1970), 511–520
Citation in format AMSBIB
\Bibitem{Lik70}
\by A.~I.~Likhtman
\paper On rings radical over commutative subrings
\jour Mat. Sb. (N.S.)
\yr 1970
\vol 83(125)
\issue 4(12)
\pages 513--523
\mathnet{http://mi.mathnet.ru/msb3525}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=271140}
\zmath{https://zbmath.org/?q=an:0212.37703}
\transl
\jour Math. USSR-Sb.
\yr 1970
\vol 12
\issue 4
\pages 511--520
\crossref{https://doi.org/10.1070/SM1970v012n04ABEH000934}
Linking options:
http://mi.mathnet.ru/eng/msb3525 http://mi.mathnet.ru/eng/msb/v125/i4/p513
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 142 | Full text: | 37 | References: | 20 |
|