RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1974, Volume 94(136), Number 1(5), Pages 126–151 (Mi msb3661)  

This article is cited in 3 scientific papers (total in 3 papers)

On a point source in an inhomogeneous medium

B. R. Vainberg


Abstract: Let $L(x,\frac\partial{\partial x})$, $x\in\mathbf R^n$, be a second-order elliptic differential operator coinciding with the Laplace operator in a neighborhood of infinity. Let $E$ be the Green's function of the Cauchy problem for the operator $\frac{\partial^2}{\partial t^2}-L$. Under certain assumptions regarding the trajectories of the Hamiltonian system connected with the operator in question, the following results are obtained: 1) an asymptotic approximation with respect to smoothness $E_N$ to the function $E$ is constructed by Hadamard's method; 2) we show that the Fourier transformation of $E_N$ from $t$ to $k$ is an analytic function of $k$ in the complex plane with a cut along the negative part of the imaginary axis, and with $\lvert\operatorname{Im}k\rvert<C<\infty$ and $\lvert\operatorname{Re}k\rvert\to\infty$ it gives the asymptotic behavior of the fundamental solution of the operator $-L-k^2$; 3) the asymptotic behavior as $t\to\infty$ of the solutions of the nonstationary problem is obtained.
Bibliography: 44 titles.

Full text: PDF file (2355 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1974, 23:1, 123–148

Bibliographic databases:

UDC: 517.944
MSC: Primary 35L15, 35B40, 35A35; Secondary 35A22, 35P25
Received: 26.06.1973

Citation: B. R. Vainberg, “On a point source in an inhomogeneous medium”, Mat. Sb. (N.S.), 94(136):1(5) (1974), 126–151; Math. USSR-Sb., 23:1 (1974), 123–148

Citation in format AMSBIB
\Bibitem{Vai74}
\by B.~R.~Vainberg
\paper On a~point source in an inhomogeneous medium
\jour Mat. Sb. (N.S.)
\yr 1974
\vol 94(136)
\issue 1(5)
\pages 126--151
\mathnet{http://mi.mathnet.ru/msb3661}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=342864}
\zmath{https://zbmath.org/?q=an:0293.35046}
\transl
\jour Math. USSR-Sb.
\yr 1974
\vol 23
\issue 1
\pages 123--148
\crossref{https://doi.org/10.1070/SM1974v023n01ABEH001716}


Linking options:
  • http://mi.mathnet.ru/eng/msb3661
  • http://mi.mathnet.ru/eng/msb/v136/i1/p126

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. B. R. Vainberg, “On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as $t\to\infty$ of solutions of non-stationary problems”, Russian Math. Surveys, 30:2 (1975), 1–58  mathnet  crossref  mathscinet  zmath
    2. Pierre H. Bérard, “On the wave equation on a compact Riemannian manifold without conjugate points”, Math Z, 155:3 (1977), 249  crossref  mathscinet  zmath
    3. A. B. Bakushinskii, A. S. Leonov, “Low-cost numerical method for solving a coefficient inverse problem for the wave equation in three-dimensional space”, Comput. Math. Math. Phys., 58:4 (2018), 548–561  mathnet  crossref  crossref  isi  elib
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:177
    Full text:85
    References:29

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020