|
This article is cited in 3 scientific papers (total in 3 papers)
Minkowski sum of a parallelotope and a segment
V. P. Grishukhin Central Economics and Mathematics Institute, RAS
Abstract:
Not every parallelotope $P$ is such that the Minkowski sum $P+S_e$
of $P$ with a segment $S_e$ of the straight line along a
vector $e$ is a parallelotope. If $P+S_e$ is a parallelotope, then
$P$ is said to be free along $e$. The parallelotope
$P+S_e$ is not always a Voronoĭ polytope. The well-known
Voronoĭ conjecture states that every parallelotope is
affinely equivalent to a Voronoĭ polytope. An attempt is made
to prove Voronoĭ's conjecture for
$P+S_e$. For that a class $\mathscr P(e)$ of canonically defined parallelotopes that are
free along $e$ is introduced. It is proved that $P+S_e$ is affinely
equivalent to a Voronoĭ polytope if and only if $P$ is a direct
sum of parallelotopes of class $\mathscr P(e)$.
This simple case of the proof of Voronoĭ's conjecture is an
instructive example for understanding the general case.
Bibliography: 10 titles.
DOI:
https://doi.org/10.4213/sm3698
Full text:
PDF file (500 kB)
References:
PDF file
HTML file
English version:
Sbornik: Mathematics, 2006, 197:10, 1417–1433
Bibliographic databases:
UDC:
511.6+514.174.6
MSC: Primary 52C22; Secondary 51M20, 52B11, 52B20, 52C07 Received: 19.05.2005 and 23.03.2006
Citation:
V. P. Grishukhin, “Minkowski sum of a parallelotope and a segment”, Mat. Sb., 197:10 (2006), 15–32; Sb. Math., 197:10 (2006), 1417–1433
Citation in format AMSBIB
\Bibitem{Gri06}
\by V.~P.~Grishukhin
\paper Minkowski sum of a parallelotope and a segment
\jour Mat. Sb.
\yr 2006
\vol 197
\issue 10
\pages 15--32
\mathnet{http://mi.mathnet.ru/msb3698}
\crossref{https://doi.org/10.4213/sm3698}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2310113}
\zmath{https://zbmath.org/?q=an:1141.52024}
\elib{http://elibrary.ru/item.asp?id=9296528}
\transl
\jour Sb. Math.
\yr 2006
\vol 197
\issue 10
\pages 1417--1433
\crossref{https://doi.org/10.1070/SM2006v197n10ABEH003805}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000243495000009}
\elib{http://elibrary.ru/item.asp?id=13502966}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846597565}
Linking options:
http://mi.mathnet.ru/eng/msb3698https://doi.org/10.4213/sm3698 http://mi.mathnet.ru/eng/msb/v197/i10/p15
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Mathieu Dutour Sikirić, Viacheslav Grishukhin, Alexander Magazinov, “On the sum of a parallelotope and a zonotope”, European Journal of Combinatorics, 42 (2014), 49
-
A. N. Magazinov, “Voronoi's conjecture for extensions of Voronoi parallelohedra”, Russian Math. Surveys, 69:4 (2014), 763–764
-
A. A. Gavrilyuk, “Geometry of lifts of tilings of Euclidean spaces”, Proc. Steklov Inst. Math., 288 (2015), 39–55
|
Number of views: |
This page: | 338 | Full text: | 107 | References: | 38 | First page: | 1 |
|