|
This article is cited in 2 scientific papers (total in 2 papers)
Substantiation of the Darcy law for a porous medium with condition of partial adhesion
S. E. Pastukhova Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University)
Abstract:
A study is made of a stationary Stokes's system in a periodically perforated domain with boundary conditions of mixed type, which describes the motion of a viscous incompressible fluid in a porous medium in the presence of friction between the fluid and the walls of the pores. The relation between the leading terms of the asymptotic expansions with respect to $\varepsilon$ for the fluid velocity and the pressure is obtained, where $\varepsilon$ is the parameter characterizing the fineness of the porous structure.
DOI:
https://doi.org/10.4213/sm372
Full text:
PDF file (298 kB)
References:
PDF file
HTML file
English version:
Sbornik: Mathematics, 1998, 189:12, 1871–1888
Bibliographic databases:
UDC:
517.953
MSC: Primary 35Q30, 76S05; Secondary 35B27 Received: 05.11.1997
Citation:
S. E. Pastukhova, “Substantiation of the Darcy law for a porous medium with condition of partial adhesion”, Mat. Sb., 189:12 (1998), 135–153; Sb. Math., 189:12 (1998), 1871–1888
Citation in format AMSBIB
\Bibitem{Pas98}
\by S.~E.~Pastukhova
\paper Substantiation of the~Darcy law for a~porous medium with condition of partial adhesion
\jour Mat. Sb.
\yr 1998
\vol 189
\issue 12
\pages 135--153
\mathnet{http://mi.mathnet.ru/msb372}
\crossref{https://doi.org/10.4213/sm372}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1686017}
\zmath{https://zbmath.org/?q=an:0932.35162}
\elib{http://elibrary.ru/item.asp?id=13672231}
\transl
\jour Sb. Math.
\yr 1998
\vol 189
\issue 12
\pages 1871--1888
\crossref{https://doi.org/10.1070/sm1998v189n12ABEH000372}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000080632300016}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0032236726}
Linking options:
http://mi.mathnet.ru/eng/msb372https://doi.org/10.4213/sm372 http://mi.mathnet.ru/eng/msb/v189/i12/p135
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Rajagopal, KR, “On a hierarchy of approximate models for flows of incompressible fluids through porous solids”, Mathematical Models & Methods in Applied Sciences, 17:2 (2007), 215
-
Girault V., Murat F., Salgado A., “Finite element discretization of Darcy's equations with pressure dependent porosity”, ESAIM-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique, 44:6 (2010), 1155–1191
|
Number of views: |
This page: | 347 | Full text: | 120 | References: | 41 | First page: | 2 |
|