RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2008, Volume 199, Number 2, Pages 27–48 (Mi msb3777)  

This article is cited in 3 scientific papers (total in 3 papers)

Gauss–Arnoldi quadrature for $\langle(zI-A)^{-1}\varphi,\varphi\rangle$ and rational Padé-type approximation for Markov-type functions

L. A. Knizhnerman

Central Geophysical Expedition

Abstract: The efficiency of Gauss–Arnoldi quadrature for the calculation of the quantity $\langle(zI-A)^{-1}\varphi,\varphi\rangle$ is studied, where $A$ is a bounded operator in a Hilbert space and $\varphi$ is a non-trivial vector in this space. A necessary and a sufficient conditions are found for the efficiency of the quadrature in the case of a normal operator. An example of a non-normal operator for which this quadrature is inefficient is presented.
It is shown that Gauss–Arnoldi quadrature is related in certain cases to rational Padé-type approximation (with the poles at Ritz numbers) for functions of Markov type and, in particular, can be used for the localization of the poles of a rational perturbation. Error estimates are found, which can also be used when classical Padé approximation does not work or it may not be efficient.
Theoretical results and conjectures are illustrated by numerical experiments.
Bibliography: 44 titles.

DOI: https://doi.org/10.4213/sm3777

Full text: PDF file (908 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2008, 199:2, 185–206

Bibliographic databases:

UDC: 519.644+519.651+517.538.52
MSC: Primary 65J99, 41A21; Secondary 65F15
Received: 11.10.2006 and 05.07.2007

Citation: L. A. Knizhnerman, “Gauss–Arnoldi quadrature for $\langle(zI-A)^{-1}\varphi,\varphi\rangle$ and rational Padé-type approximation for Markov-type functions”, Mat. Sb., 199:2 (2008), 27–48; Sb. Math., 199:2 (2008), 185–206

Citation in format AMSBIB
\Bibitem{Kni08}
\by L.~A.~Knizhnerman
\paper Gauss--Arnoldi quadrature for $\bigl\langle(zI-A)^{-1}\varphi,\varphi\bigr\rangle$ and rational Pad\'e-type approximation for Markov-type functions
\jour Mat. Sb.
\yr 2008
\vol 199
\issue 2
\pages 27--48
\mathnet{http://mi.mathnet.ru/msb3777}
\crossref{https://doi.org/10.4213/sm3777}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2402197}
\zmath{https://zbmath.org/?q=an:1161.65011}
\elib{http://elibrary.ru/item.asp?id=20359302}
\transl
\jour Sb. Math.
\yr 2008
\vol 199
\issue 2
\pages 185--206
\crossref{https://doi.org/10.1070/SM2008v199n02ABEH003915}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000255696300008}
\elib{http://elibrary.ru/item.asp?id=14113465}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-44449170494}


Linking options:
  • http://mi.mathnet.ru/eng/msb3777
  • https://doi.org/10.4213/sm3777
  • http://mi.mathnet.ru/eng/msb/v199/i2/p27

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. P. Suetin, “Strong asymptotics of polynomials orthogonal with respect to a complex weight”, Sb. Math., 200:1 (2009), 77–93  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. S. P. Suetin, “On the Existence of Nonlinear Padé–Chebyshev Approximations for Analytic Functions”, Math. Notes, 86:2 (2009), 264–275  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. Bosuwan N., “on Montessus de Ballore'S Theorem For Nonlinear Pade-Orthogonal Approximants”, Jaen J. Approx., 8:2 (2016), 151–173  mathscinet  zmath  isi  elib
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:654
    Full text:108
    References:40
    First page:11

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019