RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2007, Volume 198, Number 11, Pages 67–106 (Mi msb3792)  

The problem of birth of autowaves in parabolic systems with small diffusion

A. Yu. Kolesova, N. Kh. Rozovb, V. A. Sadovnichiib

a P. G. Demidov Yaroslavl State University
b M. V. Lomonosov Moscow State University

Abstract: A parabolic reaction-diffusion system with zero Neumann boundary conditions at the end-points of a finite interval is considered under the following basic assumptions. First, the matrix diffusion coefficient in the system is proportional to a small parameter $\varepsilon>0$, and the system itself possesses a spatially homogeneous cycle (independent of the space variable) of amplitude of order $\sqrt\varepsilon$ born by a zero equilibrium at an Andronov–Hopf bifurcation. Second, it is assumed that the matrix diffusion depends on an additional small parameter $\mu\ge0$, and for $\mu=0$ there occurs in the stability problem for the homogeneous cycle the critical case of characteristic multiplier 1 of multiplicity 2 without Jordan block. Under these constraints and for independently varied parameters $\varepsilon$ and $\mu$ the problem of the existence and the stability of spatially inhomogeneous auto-oscillations branching from the homogeneous cycle is analysed.
Bibliography: 16 titles.

DOI: https://doi.org/10.4213/sm3792

Full text: PDF file (795 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2007, 198:11, 1599–1636

Bibliographic databases:

UDC: 517.957
MSC: 35K57, 35B10, 35B32
Received: 25.10.2006 and 23.07.2007

Citation: A. Yu. Kolesov, N. Kh. Rozov, V. A. Sadovnichii, “The problem of birth of autowaves in parabolic systems with small diffusion”, Mat. Sb., 198:11 (2007), 67–106; Sb. Math., 198:11 (2007), 1599–1636

Citation in format AMSBIB
\Bibitem{KolRozSad07}
\by A.~Yu.~Kolesov, N.~Kh.~Rozov, V.~A.~Sadovnichii
\paper The problem of birth of autowaves in parabolic
systems with small diffusion
\jour Mat. Sb.
\yr 2007
\vol 198
\issue 11
\pages 67--106
\mathnet{http://mi.mathnet.ru/msb3792}
\crossref{https://doi.org/10.4213/sm3792}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2374385}
\zmath{https://zbmath.org/?q=an:1160.35450}
\elib{http://elibrary.ru/item.asp?id=9578644}
\transl
\jour Sb. Math.
\yr 2007
\vol 198
\issue 11
\pages 1599--1636
\crossref{https://doi.org/10.1070/SM2007v198n11ABEH003898}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000253636300004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-40749148019}


Linking options:
  • http://mi.mathnet.ru/eng/msb3792
  • https://doi.org/10.4213/sm3792
  • http://mi.mathnet.ru/eng/msb/v198/i11/p67

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:316
    Full text:99
    References:34
    First page:14

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019