|
This article is cited in 14 scientific papers (total in 14 papers)
Degenerate equations of monotone type: Lavrent'ev phenomenon and attainability problems
S. E. Pastukhova Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University)
Abstract:
A non-linear monotone equation with degenerate weight function is considered. In the general case the smooth functions are not dense in the corresponding weighted Sobolev space $W$, which leads to a non-uniqueness of a particular kind. Taking for the energy space either $W$ itself or its subspace $H$ equal to the closure of the smooth functions one obtains at least two uniquely soluble problems. In addition, there exist infinitely many weak solutions distinct from the $W$- and $H$-solutions. The problem of approximability or attainability is considered: which solutions of the original equation can be obtained as limits of solutions of the equations
with suitable non-degenerate weights? It is shown that the $W$- and the $H$-solutions are attainable; in both cases a regular approximation algorithm is described.
Bibliography: 14 titles.
DOI:
https://doi.org/10.4213/sm3793
Full text:
PDF file (683 kB)
References:
PDF file
HTML file
English version:
Sbornik: Mathematics, 2007, 198:10, 1465–1494
Bibliographic databases:
UDC:
517.956.226+517.956.8+517.957.95
MSC: 35J60, 47J05 Received: 31.10.2006 and 02.04.2007
Citation:
S. E. Pastukhova, “Degenerate equations of monotone type: Lavrent'ev phenomenon and attainability problems”, Mat. Sb., 198:10 (2007), 89–118; Sb. Math., 198:10 (2007), 1465–1494
Citation in format AMSBIB
\Bibitem{Pas07}
\by S.~E.~Pastukhova
\paper Degenerate equations of monotone type: Lavrent'ev phenomenon and attainability problems
\jour Mat. Sb.
\yr 2007
\vol 198
\issue 10
\pages 89--118
\mathnet{http://mi.mathnet.ru/msb3793}
\crossref{https://doi.org/10.4213/sm3793}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2362824}
\zmath{https://zbmath.org/?q=an:05272609}
\elib{https://elibrary.ru/item.asp?id=9578638}
\transl
\jour Sb. Math.
\yr 2007
\vol 198
\issue 10
\pages 1465--1494
\crossref{https://doi.org/10.1070/SM2007v198n10ABEH003892}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000252573100013}
\elib{https://elibrary.ru/item.asp?id=18337142}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38849098489}
Linking options:
http://mi.mathnet.ru/eng/msb3793https://doi.org/10.4213/sm3793 http://mi.mathnet.ru/eng/msb/v198/i10/p89
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. V. Zhikov, “On the Technique for Passing to the Limit in Nonlinear Elliptic Equations”, Funct. Anal. Appl., 43:2 (2009), 96–112
-
Buttazzo G., Kogut P.I., “Weak optimal controls in coefficients for linear elliptic problems”, Rev. Mat. Complut., 24:1 (2010), 83–94
-
Kogut P.I., Leugering G., “Optimal $L^1$-control in coefficients for Dirichlet elliptic problems: $W$-optimal solutions”, J. Optim. Theory Appl., 150:2 (2011), 205–232
-
Kogut P.I., Leugering G., “Optimal $L^1$-control in coefficients for Dirichlet elliptic problems: $H$-optimal solutions”, Z. Anal. Anwend., 31:1 (2012), 31–53
-
D'Apice C., De Maio U., Kogut O.P., “Optimal control problems in coefficients for degenerate equations of monotone type: shape stability and attainability problems”, SIAM J. Control Optim., 50:3 (2012), 1174–1199
-
Tölle J.M., “Uniqueness of weighted Sobolev spaces with weakly differentiable weights”, J. Funct. Anal., 263:10 (2012), 3195–3223
-
V. Zh. Sakbaev, “Cauchy problem for degenerating linear differential equations and averaging of approximating regularizations”, Journal of Mathematical Sciences, 213:3 (2016), 287–459
-
Kupenko O.P., Manzo R., “On an Optimal l-1-Control Problem in Coefficients for Linear Elliptic Variational Inequality”, Abstract Appl. Anal., 2013, 821964
-
Kogut P.I., Leugering G., “Matrix-Valued l-1-Optimal Controls in the Coefficients of Linear Elliptic Problems”, Z. Anal. ihre. Anwend., 32:4 (2013), 433–456
-
P.I.. Kogut, Günter Leugering, “Optimal and approximate boundary controls of an elastic body with quasistatic evolution of damage”, Math. Meth. Appl. Sci, 2014, n/a
-
Kupenko O.P., Leugering G., “On the Existence of Weak Optimal Controls in the Coefficients for a Degenerate Anisotropic p-Laplacian”, Continuous and Distributed Systems II, Studies in Systems, Decision and Control, 30, eds. Sadovnichiy V., Zgurovsky M., Springer Int Publishing Ag, 2015, 315–337
-
Kogut P.I., Kupenko O.P., “Optimality Conditions For l-1-Control in Coefficients of a Degenerate Nonlinear Elliptic Equation”, Advances in Dynamical Systems and Control, Studies in Systems Decision and Control, 69, eds. Sadovnichiy V., Zgurovsky M., Springer Int Publishing Ag, 2016, 429–471
-
Durante T., Kupenko O.P., Manzo R., “on Attainability of Optimal Controls in Coefficients For System of Hammerstein Type With Anisotropic P-Laplacian”, Ric. Mat., 66:2 (2017), 259–292
-
Kupenko O.P., Manzo R., “On Optimal Controls in Coefficients For Ill-Posed Non-Linear Elliptic Dirichlet Boundary Value Problems”, Discrete Contin. Dyn. Syst.-Ser. B, 23:4 (2018), 1363–1393
|
Number of views: |
This page: | 396 | Full text: | 142 | References: | 38 | First page: | 9 |
|