RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2008, Volume 199, Number 4, Pages 3–20 (Mi msb3851)  

This article is cited in 5 scientific papers (total in 5 papers)

On the representation of elements of a von Neumann algebra in the form of finite sums of products of projections. III. Commutators in $C^*$-algebras

A. M. Bikchentaev

N. G. Chebotarev Research Institute of Mathematics and Mechanics, Kazan State University

Abstract: It is proved that every skew-Hermitian element of any properly infinite von Neumann algebra can be represented in the form of a finite sum of commutators of projections in this algebra. A new commutation condition for projections in terms of their upper (lower) bound in the lattice of all projections of the algebra is obtained. For the full matrix algebra the set of operators with canonical trace zero is described in terms of finite sums of commutators of projections and the domain in which the trace is positive is described in terms of finite sums of pairwise products of projections. Applications to $AF$-algebras are obtained.
Bibliography: 33 titles.

DOI: https://doi.org/10.4213/sm3851

Full text: PDF file (597 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2008, 199:4, 477–493

Bibliographic databases:

UDC: 517.983+517.987
MSC: Primary 46L10; Secondary 47C15
Received: 12.03.2007 and 24.10.2007

Citation: A. M. Bikchentaev, “On the representation of elements of a von Neumann algebra in the form of finite sums of products of projections. III. Commutators in $C^*$-algebras”, Mat. Sb., 199:4 (2008), 3–20; Sb. Math., 199:4 (2008), 477–493

Citation in format AMSBIB
\Bibitem{Bik08}
\by A.~M.~Bikchentaev
\paper On the representation of elements of a von Neumann algebra
in the form of finite sums of products of projections.
III.~Commutators in $C^*$-algebras
\jour Mat. Sb.
\yr 2008
\vol 199
\issue 4
\pages 3--20
\mathnet{http://mi.mathnet.ru/msb3851}
\crossref{https://doi.org/10.4213/sm3851}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2410137}
\zmath{https://zbmath.org/?q=an:1175.46053}
\elib{http://elibrary.ru/item.asp?id=20359318}
\transl
\jour Sb. Math.
\yr 2008
\vol 199
\issue 4
\pages 477--493
\crossref{https://doi.org/10.1070/SM2008v199n04ABEH003929}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000257185400008}
\elib{http://elibrary.ru/item.asp?id=20822516}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-47949101833}


Linking options:
  • http://mi.mathnet.ru/eng/msb3851
  • https://doi.org/10.4213/sm3851
  • http://mi.mathnet.ru/eng/msb/v199/i4/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. A. M. Bikchentaev, “Commutativity of projectors and trace characterization on von Neumann algebras. I”, Russian Math. (Iz. VUZ), 53:12 (2009), 68–71  mathnet  crossref  mathscinet  zmath
    2. A. M. Bikchentaev, “Commutativity of projections and characterization of traces on von Neumann algebras”, Siberian Math. J., 51:6 (2010), 971–977  mathnet  crossref  mathscinet  isi  elib
    3. A. M. Bikchentaev, “Commutation of Projections and Trace Characterization on von Neumann Algebras. II”, Math. Notes, 89:4 (2011), 461–471  mathnet  crossref  crossref  mathscinet  isi
    4. A. M. Bikchentaev, “Sled i raznosti idempotentov v $C^*$-algebrakh”, Matem. zametki, 105:5 (2019), 647–655  mathnet  crossref  elib
    5. A. M. Bikchentaev, “Idealnye $F$-normy na $C^*$-algebrakh. II”, Izv. vuzov. Matem., 2019, no. 3, 90–96  mathnet  crossref
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:419
    Full text:129
    References:59
    First page:12

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019