|
This article is cited in 4 scientific papers (total in 4 papers)
The test rank of a soluble product of free Abelian groups
Ch. K. Guptaa, E. I. Timoshenkob a University of Manitoba
b Novosibirsk State University of Architecture and Civil Engineering
Abstract:
We consider the variety $\mathbb A^l$ of all soluble groups of derived length at most $l$, $l\ge2$. Suppose that a finitely generated group $G$ is a free product in the variety $\mathbb A^l$
of Abelian torsion-free groups. It is proved that the test rank of $G$ is one less than the number of factors. A test set of elements is written out explicitly.
Bibliography: 27 titles.
Author to whom correspondence should be addressed
DOI:
https://doi.org/10.4213/sm3852
Full text:
PDF file (536 kB)
References:
PDF file
HTML file
English version:
Sbornik: Mathematics, 2008, 199:4, 495–510
Bibliographic databases:
UDC:
512.54
MSC: Primary 20F16; Secondary 20E10, 20E36 Received: 14.03.2007
Citation:
Ch. K. Gupta, E. I. Timoshenko, “The test rank of a soluble product of free Abelian groups”, Mat. Sb., 199:4 (2008), 21–36; Sb. Math., 199:4 (2008), 495–510
Citation in format AMSBIB
\Bibitem{GupTim08}
\by Ch.~K.~Gupta, E.~I.~Timoshenko
\paper The test rank of a~soluble product of free Abelian groups
\jour Mat. Sb.
\yr 2008
\vol 199
\issue 4
\pages 21--36
\mathnet{http://mi.mathnet.ru/msb3852}
\crossref{https://doi.org/10.4213/sm3852}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2410138}
\zmath{https://zbmath.org/?q=an:1166.20026}
\elib{https://elibrary.ru/item.asp?id=20359319}
\transl
\jour Sb. Math.
\yr 2008
\vol 199
\issue 4
\pages 495--510
\crossref{https://doi.org/10.1070/SM2008v199n04ABEH003930}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000257185400009}
\elib{https://elibrary.ru/item.asp?id=14723516}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-47949118139}
Linking options:
http://mi.mathnet.ru/eng/msb3852https://doi.org/10.4213/sm3852 http://mi.mathnet.ru/eng/msb/v199/i4/p21
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Naime Ekici, Nazar Şahin Öǧüşlü, “Test rank of an abelian product of a free Lie algebra and a free abelian Lie algebra”, Proc. Math. Sci., 121:3 (2011), 291–300
-
Fine B., Gaglione A., Lipschutz S., Spellman D., “On Turner's theorem and first-order theory”, Commun. Algebr., 45:1 (2017), 29–46
-
Ozkurt Z., Ekici N., “Abelian Product of Free Abelian and Free Lie Algebras”, Hacet. J. Math. Stat., 47:2 (2018), 331–337
-
Oguslu N.S., Ekici N., “The Test Rank of a Solvable Product of Free Abelian Lie Algebras”, J. Algebra. Appl., 18:2 (2019), 1950025
|
Number of views: |
This page: | 542 | Full text: | 102 | References: | 41 | First page: | 6 |
|