RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2008, Volume 199, Number 10, Pages 33–40 (Mi msb3925)  

This article is cited in 5 scientific papers (total in 5 papers)

Almost computably enumerable families of sets

I. Sh. Kalimullin

Kazan State University, Faculty of Mechanics and Mathematics

Abstract: An almost computably enumerable family that is not $\varnothing'$-computably enumerable is constructed. Moreover, it is established that for any computably enumerable (c.e.) set $A$ there exists a family that is $X$-c.e. if and only if the set $X$ is not $A$-computable.
Bibliography: 5 titles.

DOI: https://doi.org/10.4213/sm3925

Full text: PDF file (440 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2008, 199:10, 1451–1458

Bibliographic databases:

UDC: 510.53+510.531+510.532
MSC: Primary 03D25; Secondary 03D45
Received: 09.07.2007 and 03.04.2008

Citation: I. Sh. Kalimullin, “Almost computably enumerable families of sets”, Mat. Sb., 199:10 (2008), 33–40; Sb. Math., 199:10 (2008), 1451–1458

Citation in format AMSBIB
\Bibitem{Kal08}
\by I.~Sh.~Kalimullin
\paper Almost computably enumerable families of sets
\jour Mat. Sb.
\yr 2008
\vol 199
\issue 10
\pages 33--40
\mathnet{http://mi.mathnet.ru/msb3925}
\crossref{https://doi.org/10.4213/sm3925}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2473810}
\zmath{https://zbmath.org/?q=an:1162.03022}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2008SbMat.199.1451K}
\elib{http://elibrary.ru/item.asp?id=20359286}
\transl
\jour Sb. Math.
\yr 2008
\vol 199
\issue 10
\pages 1451--1458
\crossref{https://doi.org/10.1070/SM2008v199n10ABEH003967}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000262711500006}
\elib{http://elibrary.ru/item.asp?id=13574838}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-66149153886}


Linking options:
  • http://mi.mathnet.ru/eng/msb3925
  • https://doi.org/10.4213/sm3925
  • http://mi.mathnet.ru/eng/msb/v199/i10/p33

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Csima B.F., Kalimullin I.S., “Degree spectra and immunity properties”, MLQ Math. Log. Q., 56:1 (2010), 67–77  crossref  mathscinet  zmath  isi  elib  scopus
    2. Frolov A., Kalimullin I., Harizanov V., Kudinov O., Miller R., “Spectra of high$_n$ and non-low$_n$ degrees”, J. Logic Comput., 22:4 (2012), 755–777  crossref  mathscinet  zmath  isi  elib  scopus
    3. Greenberg N., Montalban A., Slaman T.A., “Relative to Any Non-Hyperarithmetic Set”, J. Math. Log., 13:1 (2013), 1250007  crossref  mathscinet  zmath  isi  elib  scopus
    4. N. A. Bazhenov, “Boolean algebras with distinguished endomorphisms and generating trees”, J. Math. Sci., 215:4 (2016), 460–474  mathnet  crossref
    5. Andrews U., Cai M., Kalimullin I.Sh., Lempp S., Miller J.S., Montalban A., “the Complements of Lower Cones of Degrees and the Degree Spectra of Structures”, J. Symb. Log., 81:3 (2016), 997–1006  crossref  mathscinet  zmath  isi  scopus
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:308
    Full text:80
    References:31
    First page:12

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019