RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 1999, Volume 190, Number 3, Pages 129–160 (Mi msb398)  

This article is cited in 8 scientific papers (total in 8 papers)

Blow-up boundary regimes for general quasilinear parabolic equations in multidimensional domains

A. E. Shishkov, A. G. Shchelkov

Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences

Abstract: A new approach (not based on the techniques of barriers) to the study of asymptotic properties of the generalized solutions of parabolic initial boundary-value problems with finite-time blow-up of the boundary values is proposed. Precise conditions on the blow-up pattern are found that guarantee uniform localization of the solution for an arbitrary compactly supported initial function. The main result of the paper consists in obtaining precise sufficient conditions for the singular (or blow-up) set of an arbitrary solution to remain within the boundary of the domain.

DOI: https://doi.org/10.4213/sm398

Full text: PDF file (402 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 1999, 190:3, 447–479

Bibliographic databases:

UDC: 517.9
MSC: Primary 35K55; Secondary 35K65
Received: 31.03.1998

Citation: A. E. Shishkov, A. G. Shchelkov, “Blow-up boundary regimes for general quasilinear parabolic equations in multidimensional domains”, Mat. Sb., 190:3 (1999), 129–160; Sb. Math., 190:3 (1999), 447–479

Citation in format AMSBIB
\Bibitem{ShiShc99}
\by A.~E.~Shishkov, A.~G.~Shchelkov
\paper Blow-up boundary regimes for general quasilinear parabolic equations in multidimensional domains
\jour Mat. Sb.
\yr 1999
\vol 190
\issue 3
\pages 129--160
\mathnet{http://mi.mathnet.ru/msb398}
\crossref{https://doi.org/10.4213/sm398}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1700997}
\zmath{https://zbmath.org/?q=an:0938.35084}
\transl
\jour Sb. Math.
\yr 1999
\vol 190
\issue 3
\pages 447--479
\crossref{https://doi.org/10.1070/sm1999v190n03ABEH000398}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000082221600005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0033450026}


Linking options:
  • http://mi.mathnet.ru/eng/msb398
  • https://doi.org/10.4213/sm398
  • http://mi.mathnet.ru/eng/msb/v190/i3/p129

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. B. H. Gilding, J. Goncerzewicz, “Localization of Solutions of Exterior Domain Problems for the Porous Media Equation with Radial Symmetry”, SIAM J Math Anal, 31:4 (2000), 862  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    2. A. E. Shishkov, “Localized Boundary Blow-up Regimes for General Quasilinear Divergent Parabolic Equations of Arbitrary Order”, Proc. Steklov Inst. Math., 236 (2002), 341–356  mathnet  mathscinet  zmath
    3. Galaktionov V.A., Shishkov A.E., “Saint-Venant's principle in blow-up for higher-order quasilinear parabolic equations”, Proc. Roy. Soc. Edinburgh Sect. A, 133:5 (2003), 1075–1119  crossref  mathscinet  zmath  isi
    4. Galaktionov V.A., Shishkov A.E., “Structure of boundary blow-up for higher-order quasilinear parabolic equations”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460:2051 (2004), 3299–3325  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    5. Galaktionov, VA, “Self-similar boundary blow-up for higher-order quasilinear parabolic equations”, Proceedings of the Royal Society of Edinburgh Section A-Mathematics, 135 (2005), 1195  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    6. Shishkov, A, “Diffusion versus absorption in semilinear elliptic equations”, Journal of Mathematical Analysis and Applications, 352:1 (2009), 206  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    7. Degtyarev S.P., “On the Instantaneous Shrinking of the Support of a Solution to the Cauchy Problem for an Anisotropic Parabolic Equation”, Ukr. Math. J., 61:5 (2009), 747–763  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    8. Shishkov A., “Large Solutions of Parabolic Logistic Equation With Spatial and Temporal Degeneracies”, Discret. Contin. Dyn. Syst.-Ser. S, 10:4 (2017), 895–907  crossref  mathscinet  zmath  isi  scopus
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:483
    Full text:147
    References:41
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020