RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2009, Volume 200, Number 2, Pages 31–60 (Mi msb4032)  

This article is cited in 4 scientific papers (total in 4 papers)

Some properties of the space of $n$-dimensional Lie algebras

V. V. Gorbatsevich

Moscow State Aviation Technological University

Abstract: Some general properties of the space $\mathscr L_n$ of $n$-dimensional Lie algebras are studied. This space is defined by the system of Jacobi's quadratic equations. It is proved that these equations are linearly independent and equivalent to each other (more precisely, the quadratic forms defining these equations are affinely equivalent). Moreover, the problem on the closures of some orbits of the natural action of the group $\mathrm{GL}_n$ on $\mathscr L_n$ is considered. Two Lie algebras are indicated whose orbits are closed in the projectivization of the space $\mathscr L_n$. The intersection of all irreducible components of the space $\mathscr L_n$ is also treated. It is proved that this intersection is nontrivial and consists of nilpotent Lie algebras. Two Lie algebras belonging to this intersection are indicated. Some other results concerning arbitrary Lie algebras and the space $\mathscr L_n$ formed by these algebras are presented.
Bibliography: 17 titles.

Keywords: Lie algebra, Jacobi's identity, irreducible component, contraction.

DOI: https://doi.org/10.4213/sm4032

Full text: PDF file (612 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2009, 200:2, 185–213

Bibliographic databases:

UDC: 512.554.3
MSC: Primary 17B05; Secondary 17B30, 17B40
Received: 09.11.2007 and 25.07.2008

Citation: V. V. Gorbatsevich, “Some properties of the space of $n$-dimensional Lie algebras”, Mat. Sb., 200:2 (2009), 31–60; Sb. Math., 200:2 (2009), 185–213

Citation in format AMSBIB
\Bibitem{Gor09}
\by V.~V.~Gorbatsevich
\paper Some properties of the space of $n$-dimensional Lie algebras
\jour Mat. Sb.
\yr 2009
\vol 200
\issue 2
\pages 31--60
\mathnet{http://mi.mathnet.ru/msb4032}
\crossref{https://doi.org/10.4213/sm4032}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2503136}
\zmath{https://zbmath.org/?q=an:05560036}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200..185G}
\elib{https://elibrary.ru/item.asp?id=19066106}
\transl
\jour Sb. Math.
\yr 2009
\vol 200
\issue 2
\pages 185--213
\crossref{https://doi.org/10.1070/SM2009v200n02ABEH003991}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000266224500007}
\elib{https://elibrary.ru/item.asp?id=13602034}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67650925533}


Linking options:
  • http://mi.mathnet.ru/eng/msb4032
  • https://doi.org/10.4213/sm4032
  • http://mi.mathnet.ru/eng/msb/v200/i2/p31

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. V. Gorbatsevich, “On the intersection of irreducible components of the space of finite-dimensional Lie algebras”, Sb. Math., 203:7 (2012), 976–995  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. V. V. Gorbatsevich, “On the frames of spaces of finite-dimensional Lie algebras of dimension at most 6”, Sb. Math., 205:5 (2014), 633–645  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. D. V. Millionshchikov, R. Jimenez, “Geometry of Central Extensions of Nilpotent Lie Algebras”, Proc. Steklov Inst. Math., 305 (2019), 209–231  mathnet  crossref  crossref  isi  elib
    4. V. V. Gorbatsevich, “Nekotorye svoistva pochti abelevykh algebr Li”, Izv. vuzov. Matem., 2020, no. 4, 26–42  mathnet  crossref
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:434
    Full text:127
    References:48
    First page:11

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021