RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2009, Volume 200, Number 2, Pages 61–74 (Mi msb4111)  

This article is cited in 3 scientific papers (total in 3 papers)

Asymptotic behaviour of the discrete spectrum of a quasi-periodic boundary value problem for a two-dimensional hyperbolic equation

V. M. Kaplitskiiab

a Institute of Applied Mathematics and Informatics, Vladikavkaz Scientific Centre, RAS
b Southern Federal University, Faculty of Mathematics, Mechanics and Computer Sciences

Abstract: This paper is concerned with the asymptotic properties of the discrete spectrum of two-dimensional self-adjoint operators of hyperbolic type. For the operator of the model quasi-periodic boundary value problem associated with a self-adjoint hyperbolic equation with smooth coefficients on a two-dimensional torus we obtain an asymptotic formula for the distribution function of the eigenvalues.
Bibliography: 9 titles.

Keywords: two-dimensional hyperbolic equation, quasi-periodic boundary value problem, spectrum, distribution of eigenvalues.

DOI: https://doi.org/10.4213/sm4111

Full text: PDF file (499 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2009, 200:2, 215–228

Bibliographic databases:

UDC: 517.984.56
MSC: Primary 34L20; Secondary 35L20
Received: 21.11.2007

Citation: V. M. Kaplitskii, “Asymptotic behaviour of the discrete spectrum of a quasi-periodic boundary value problem for a two-dimensional hyperbolic equation”, Mat. Sb., 200:2 (2009), 61–74; Sb. Math., 200:2 (2009), 215–228

Citation in format AMSBIB
\Bibitem{Kap09}
\by V.~M.~Kaplitskii
\paper Asymptotic behaviour of the discrete spectrum of a~quasi-periodic
boundary value problem for a~two-dimensional hyperbolic equation
\jour Mat. Sb.
\yr 2009
\vol 200
\issue 2
\pages 61--74
\mathnet{http://mi.mathnet.ru/msb4111}
\crossref{https://doi.org/10.4213/sm4111}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2503137}
\zmath{https://zbmath.org/?q=an:1173.35621}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200..215K}
\elib{https://elibrary.ru/item.asp?id=19066107}
\transl
\jour Sb. Math.
\yr 2009
\vol 200
\issue 2
\pages 215--228
\crossref{https://doi.org/10.1070/SM2009v200n02ABEH003992}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000266224500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67650935129}


Linking options:
  • http://mi.mathnet.ru/eng/msb4111
  • https://doi.org/10.4213/sm4111
  • http://mi.mathnet.ru/eng/msb/v200/i2/p61

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. M. Kaplitskiǐ, “Asymptotics of the distribution of eigenvalues of a selfadjoint second order hyperbolic differential operator on the two-dimensional torus”, Siberian Math. J., 51:5 (2010), 830–846  mathnet  crossref  mathscinet  isi  elib
    2. V. M. Kaplitskii, “A differential equation for Lerch's transcendent and associated symmetric operators in Hilbert space”, Sb. Math., 205:8 (2014), 1080–1106  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. Fox J., Strichartz R.S., “Unexpected Spectral Asymptotics For Wave Equations on Certain Compact Spacetimes”, J. Anal. Math., 136:1 (2018), 209–251  crossref  mathscinet  zmath  isi  scopus
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:750
    Full text:134
    References:90
    First page:71

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020