RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1967, Volume 73(115), Number 2, Pages 255–302 (Mi msb4127)  

This article is cited in 148 scientific papers (total in 148 papers)

The spaces $BV$ and quasilinear equations

A. I. Vol'pert


Full text: PDF file (4673 kB)

English version:
Mathematics of the USSR-Sbornik, 1967, 2:2, 225–267

Bibliographic databases:

UDC: 513.881+517.29+517.945.6
MSC: 35K20, 46A32, 45E05
Received: 25.10.1966

Citation: A. I. Vol'pert, “The spaces $BV$ and quasilinear equations”, Mat. Sb. (N.S.), 73(115):2 (1967), 255–302; Math. USSR-Sb., 2:2 (1967), 225–267

Citation in format AMSBIB
\Bibitem{Vol67}
\by A.~I.~Vol'pert
\paper The spaces $BV$ and quasilinear equations
\jour Mat. Sb. (N.S.)
\yr 1967
\vol 73(115)
\issue 2
\pages 255--302
\mathnet{http://mi.mathnet.ru/msb4127}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=216338}
\zmath{https://zbmath.org/?q=an:0168.07402}
\transl
\jour Math. USSR-Sb.
\yr 1967
\vol 2
\issue 2
\pages 225--267
\crossref{https://doi.org/10.1070/SM1967v002n02ABEH002340}


Linking options:
  • http://mi.mathnet.ru/eng/msb4127
  • http://mi.mathnet.ru/eng/msb/v115/i2/p255

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. I. Vol'pert, S. I. Khudyaev, “Cauchy's problem for degenerate second order quasilinear parabolic equations”, Math. USSR-Sb., 7:3 (1969), 365–387  mathnet  crossref  mathscinet  zmath
    2. S. N. Kruzhkov, “First order quasilinear equations in several independent variables”, Math. USSR-Sb., 10:2 (1970), 217–243  mathnet  crossref  mathscinet  zmath
    3. Michael G. Crandall, “The semigroup approach to first order quasilinear equations in several space variables”, Isr J Math, 12:2 (1972), 108  crossref  mathscinet  zmath
    4. Mauro Fabrizio, “Soluzioni generalizzate e disuguaglianze variazionali per alcuni sistemi differenziali non lineari della fisica matematica”, Annali di Matematica, 95:1 (1973), 63  crossref  mathscinet  zmath
    5. É. B. Bykhovskii, “A global boundary-value problem for a quasilinear differential equation of first order”, Math. USSR-Izv., 8:6 (1974), 1387–1431  mathnet  crossref  mathscinet  zmath
    6. Tai-Ping Liu, “Shock waves in the nonisentropic gas flow”, Journal of Differential Equations, 22:2 (1976), 442  crossref
    7. Ronald J. DiPerna, “Decay of solutions of hyperbolic systems of conservation laws with a convex extension”, Arch Rational Mech Anal, 64:1 (1977), 1  crossref  mathscinet  zmath  adsnasa
    8. É. B. Bykhovskii, “A boundary value problem for a quasilinear equation of first order with arbitrary dependence of the direction of the characteristics at the boundary on the unknown function”, Math. USSR-Izv., 11:2 (1977), 397–416  mathnet  crossref  mathscinet  zmath
    9. Michael Crandall, Andrew Majda, “The method of fractional steps for conservation laws”, Numer Math, 34:3 (1980), 285  crossref  mathscinet  zmath  isi
    10. Ronald J. Diperna, “Finite difference schemes for conservation laws”, Comm Pure Appl Math, 35:3 (1982), 379  crossref  mathscinet
    11. David H. Wagner, “The Riemann Problem in Two Space Dimensions for a Single Conservation Law”, SIAM J Math Anal, 14:3 (1983), 534  crossref  mathscinet  zmath  isi
    12. R. J. DiPerna, “Convergence of approximate solutions to conservation laws”, Arch Rational Mech Anal, 82:1 (1983), 27  crossref  mathscinet  zmath  adsnasa
    13. Kuo-Shung Cheng, “Constructing solutions of a single conservation law”, Journal of Differential Equations, 49:3 (1983), 344  crossref
    14. Primo Brandi, Anna Salvadori, “On convergence in area in the generalized sense”, Journal of Mathematical Analysis and Applications, 92:1 (1983), 119  crossref
    15. Kuo-Shung Cheng, “The space BV is not enough for hyperbolic conservation laws”, Journal of Mathematical Analysis and Applications, 91:2 (1983), 559  crossref
    16. A. Y. Le Roux, P. Quesseveur, “Convergence of an Antidiffusion Lagrange-Euler Scheme for Quasilinear Equations”, SIAM J Numer Anal, 21:5 (1984), 985  crossref  mathscinet  zmath  isi
    17. Yann Brenier, “Averaged Multivalued Solutions for Scalar Conservation Laws”, SIAM J Numer Anal, 21:6 (1984), 1013  crossref  mathscinet  zmath  isi
    18. Jens Lorenz, “Analysis of Difference Schemes for a Stationary Shock Problem”, SIAM J Numer Anal, 21:6 (1984), 1038  crossref  mathscinet  zmath  isi
    19. Ronald J. Diperna, “Singularities and oscillations in solutions to conservation laws”, Physica D: Nonlinear Phenomena, 12:1-3 (1984), 363  crossref
    20. Eitan Tadmor, “Skew-selfadjoint form for systems of conservation laws”, Journal of Mathematical Analysis and Applications, 103:2 (1984), 428  crossref
    21. Ronald J. DiPerna, “Measure-valued solutions to conservation laws”, Arch Rational Mech Anal, 88:3 (1985), 223  crossref  mathscinet  zmath
    22. Ronald J. DiPerna, Andrew Majda, “The validity of nonlinear geometric optics for weak solutions of conservation laws”, Comm Math Phys, 98:3 (1985), 313  crossref  mathscinet  zmath
    23. Bradley J. Lucier, “On sobolev regularizations of hyperbolic conservationlaws laws”, Communications in Partial Differential Equations, 10:1 (1985), 1  crossref
    24. Stephen A Williams, Richard C Scalzo, “Differential games and BV functions”, Journal of Differential Equations, 59:3 (1985), 296  crossref
    25. Cesari L., “Nonlinear-Analysis”, Boll. Unione Mat. Italiana, 4A:2 (1985), 157–216  isi
    26. Kuo-Shung Cheng, “A regularity theorem for a nonconvex scalar conservation law”, Journal of Differential Equations, 61:1 (1986), 79  crossref
    27. Jens Lorenz, Richard Sanders, “On the Rate of Convergence of Viscosity Solutions for Boundary Value Problems”, SIAM J Math Anal, 18:2 (1987), 306  crossref  mathscinet  zmath  isi
    28. L. Cesari, P. Brandi, A. Salvadori, “Existence theorems concerning simple integrals of the calculus of variations for discontinuous solutions”, Arch Rational Mech Anal, 98:4 (1987), 307  crossref  mathscinet  zmath  adsnasa
    29. S. N. Kruzhkov, N. S. Petrosyan, “Asymptotic behaviour of the solutions of the Cauchy problem for non-linear first order equations”, Russian Math. Surveys, 42:5 (1987), 1–47  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    30. David H Wagner, “Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions”, Journal of Differential Equations, 68:1 (1987), 118  crossref
    31. J.J Moreau, M Valadier, “A chain rule involving vector functions of bounded variation”, Journal of Functional Analysis, 74:2 (1987), 333  crossref
    32. Bradley J. Lucier, “Regularity Through Approximation for Scalar Conservation Laws”, SIAM J Math Anal, 19:4 (1988), 763  crossref  mathscinet  isi
    33. H. Holden, L. Holden, R. Høegh-Krohn, “A numerical method for first order nonlinear scalar conservation laws in one-dimension”, Computers & Mathematics with Applications, 15:6-8 (1988), 595  crossref
    34. Bernardo Cockburn, “Quasimonotone Schemes for Scalar Conservation Laws Part I”, SIAM J Numer Anal, 26:6 (1989), 1325  crossref  mathscinet  zmath  isi
    35. I-Liang Chern, “Stability theorem and truncation error analysis for the Glimm scheme and for a front tracking method for flows with strong discontinuities”, Comm Pure Appl Math, 42:6 (1989), 815  crossref  mathscinet  zmath
    36. Witold Kosiński, B. Brosowski, “Admissibility and uniqueness of weak solutions to hyperbolic systems of balance laws”, Math Meth Appl Sci, 11:2 (1989), 253  crossref  mathscinet  zmath  isi
    37. B. Dakoronya, “Slabaya nepreryvnost i slabaya polunepreryvnost snizu nelineinykh funktsionalov”, UMN, 44:4(268) (1989), 35–98  mathnet  mathscinet  zmath
    38. Yoshikazu Giga, Zensho Yoshida, “A Dynamic Free-Boundary Problem in Plasma Physics”, SIAM J Math Anal, 21:5 (1990), 1118  crossref  mathscinet  zmath  isi
    39. G. Bellettini, M. Paolini, C. Verdi, “Numerical minimization of geometrical type problems related to calculus of variations”, Calcolo, 27:3-4 (1990), 251  crossref  mathscinet  zmath
    40. Patricio Aviles, Yoshikazu Giga, “Variational integrals on mappings of bounded variation and their lower semicontinuity”, Arch Rational Mech Anal, 115:3 (1991), 201  crossref  mathscinet  zmath
    41. Washek F Pfeffer, “The Gauss-Green theorem”, Advances in Mathematics, 87:1 (1991), 93  crossref
    42. Jean François Colombeau, Arnaud Heibig, “Nonconservative Products in Bounded Variation Functions”, SIAM J Math Anal, 23:4 (1992), 941  crossref  mathscinet  zmath  isi
    43. Gui -Qiang Chen, “The method of quasidecoupling for discontinuous solutions to conservation laws”, Arch Rational Mech Anal, 121:2 (1992), 131  crossref  mathscinet  zmath
    44. Alain Forestier, Philippe Floch, “Multivalued solutions to some non-linear and non-strictly hyperbolic systems”, Japan J Indust Appl Math, 9:1 (1992), 1  crossref
    45. Arnon Levy, “On Majda' Model For Dynamic Combustion”, Communications in Partial Differential Equations, 17:3-4 (1992), 657  crossref
    46. M. Oberguggenberger, “Case study of a nonlinear, nonconservative, nonstrictly hyperbolic system”, Nonlinear Analysis: Theory, Methods & Applications, 19:1 (1992), 53  crossref
    47. Athanasios N Lyberopoulos, “Large-time structure of solutions of scalar conservation laws without convexity in the presence of a linear source field”, Journal of Differential Equations, 99:2 (1992), 342  crossref
    48. Philippe Floch, “Propagating phase boundaries: Formulation of the problem and existence via the Glimm method”, Arch Rational Mech Anal, 123:2 (1993), 153  crossref  mathscinet  zmath
    49. Bjorn Engquist, E Weinan, “Large time behavior and homogenization of solutions of two-dimensional conservation laws”, Comm Pure Appl Math, 46:1 (1993), 1  crossref  mathscinet  zmath
    50. Philippe Le Floch, Zhouping Xin, “Uniqueness via the adjoint problems for systems of conservation laws”, Comm Pure Appl Math, 46:11 (1993), 1499  crossref  mathscinet  zmath
    51. Jinghua Wang, Gerald Warnecke, “On Entropy Consistency of Large Time Step Schemes I. The Godunov and Glimm Schemes”, SIAM J Numer Anal, 30:5 (1993), 1229  crossref  mathscinet  zmath  isi
    52. David Sidilkover, Achi Brandt, “Multigrid Solution to Steady-State Two-Dimensional Conservation Laws”, SIAM J Numer Anal, 30:1 (1993), 249  crossref  mathscinet  zmath  isi
    53. Kevin Zumbrun, “N-waves in elasticity”, Comm Pure Appl Math, 46:1 (1993), 75  crossref  mathscinet  zmath
    54. Roberta Dal Passo, “Uniqueness of the entropy solution of a strongly degenerate parabolic equation”, Communications in Partial Differential Equations, 18:1-2 (1993), 265  crossref
    55. Heinrich Freistühler, “Non-uniformity of vanishing viscosity approximation”, Applied Mathematics Letters, 6:2 (1993), 35  crossref
    56. Yuxi Zheng, Andrew Majda, “Existence of global weak solutions to one-component Vlasov–Poisson and Fokker–Planck–Poisson systems in one space dimension with measures as initial data”, Comm Pure Appl Math, 47:10 (1994), 1365  crossref  mathscinet  zmath
    57. Jean-Bernard Betbeder, “Etude d'une equation non lineaire d'evolution de type divergentiel”, Communications in Partial Differential Equations, 19:7-8 (1994), 1019  crossref
    58. Andrew J. Majda, George Majda, Yuxi Zheng, “Concentrations in the one-dimensional Vlasov–Poisson equations. II. Screening and the necessity for measure-valued solutions in the two component case”, Physica D: Nonlinear Phenomena, 79:1 (1994), 41  crossref
    59. Andrew J. Majda, George Majda, Yuxi Zheng, “Concentrations in the one-dimensional Vlasov–Poisson equations I: Temporal development and non-unique weak solutions in the single component case”, Physica D: Nonlinear Phenomena, 74:3-4 (1994), 268  crossref
    60. Hermano Frid, “Solution to the initial boundary-value problem for the regularized Buckley-Leverett system”, Acta Appl Math, 38:3 (1995), 239  crossref  mathscinet  zmath  isi
    61. Georg Dolzmann, Stefan Müller, “Microstructures with finite surface energy: the two-well problem”, Arch Rational Mech Anal, 132:2 (1995), 101  crossref  mathscinet  zmath
    62. E Weinan, Yu. G. Rykov, Ya. G. Sinai, “Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics”, Comm Math Phys, 177:2 (1996), 349  crossref  mathscinet  zmath  adsnasa  elib
    63. Ronald A. DeVore, Bradley J. Lucier, “On the Size and Smoothness of Solutions to Nonlinear Hyperbolic Conservation Laws”, SIAM J Math Anal, 27:3 (1996), 684  crossref  mathscinet  zmath  isi
    64. G. Bellettini, M. Paolini, S. Venturini, “Some results on surface measures in calculus of variations”, Annali di Matematica, 170:1 (1996), 329  crossref  mathscinet  zmath  isi
    65. A. Braides, A. Defranceschi, E. Vitali, “A relaxation approach to hencky’s plasticity”, Appl Math Optim, 35:1 (1997), 45  crossref  mathscinet  zmath  isi
    66. Markos A. Katsoulakis, Athanasios E. Tzavaras, “Contractive relaxation systems and the scalar multidimensional conservation law”, Communications in Partial Differential Equations, 22:1-2 (1997), 225  crossref
    67. F. Poupaud, M. Rascle, “Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients”, Communications in Partial Differential Equations, 22:1-2 (1997), 225  crossref
    68. Andrea Corli, Monique Sablé-Tougeron, “Perturbations of Bounded Variation of a Strong Shock Wave”, Journal of Differential Equations, 138:2 (1997), 195  crossref
    69. Tao Tang, “Convergence Analysis for Operator-Splitting Methods Applied to Conservation Laws with Stiff Source Terms”, SIAM J Numer Anal, 35:5 (1998), 1939  crossref  mathscinet  zmath  isi
    70. R. Bürger, W. L. Wendland, “Entropy boundary and jump conditions in the theory of sedimentation with compression”, Math Meth Appl Sci, 21:9 (1998), 865  crossref  mathscinet
    71. Laurent Gosse, “A priori error estimate for a well-balanced scheme designed for inhomogeneous scalar conservation laws†”, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 327:5 (1998), 467  crossref
    72. Giuseppe Savaré, Franco Tomarelli, “Superposition and Chain Rule for Bounded Hessian Functions”, Advances in Mathematics, 140:2 (1998), 237  crossref
    73. François Bouchut, François James, “Solutions en dualité pour les gaz sans pression”, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 326:9 (1998), 1073  crossref
    74. G. Aubert, P. Kornprobst, “A Mathematical Study of the Relaxed Optical Flow Problem in the Space $BV (\Omega)$”, SIAM J Math Anal, 30:6 (1999), 1282  crossref  mathscinet  zmath  isi
    75. Jiaxin Hu, “A two-dimensional hyperbolic system of nonlinear conservation laws with functional solutions”, Acta Math Sinica, 15:3 (1999), 317  crossref  mathscinet  zmath
    76. Tai-Ping Liu, Tong Yang, “Well-posedness theory for hyperbolic conservation laws”, Comm Pure Appl Math, 52:12 (1999), 1553  crossref  mathscinet  zmath
    77. Bouchut François, James François, “Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness”, Communications in Partial Differential Equations, 24:11-12 (1999), 2173  crossref  elib
    78. Steinar Evje, Kenneth Hvistendahl Karlsen, “Monotone Difference Approximations Of BV Solutions To Degenerate Convection-Diffusion Equations”, SIAM J Numer Anal, 37:6 (2000), 1838  crossref  mathscinet  zmath  isi
    79. W. E, Ya. G. Sinai, “Recent results on mathematical and statistical hydrodynamics”, Russian Math. Surveys, 55:4 (2000), 635–666  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    80. L GOSSE, “A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms*1”, Computers & Mathematics with Applications, 39:9-10 (2000), 135  crossref
    81. R. Bürger, S. Evje, K.Hvistendahl Karlsen, “On Strongly Degenerate Convection–Diffusion Problems Modeling Sedimentation–Consolidation Processes”, Journal of Mathematical Analysis and Applications, 247:2 (2000), 517  crossref
    82. G. Falkovich, K. Gawȩdzki, M. Vergassola, “Particles and fields in fluid turbulence”, Rev Mod Phys, 73:4 (2001), 913  crossref  isi  elib
    83. Paolo Baiti, Philippe G. LeFloch, Benedetto Piccoli, “Uniqueness of Classical and Nonclassical Solutions for Nonlinear Hyperbolic Systems”, Journal of Differential Equations, 172:1 (2001), 59  crossref
    84. Thomas Hillen, Christian Rohde, Frithjof Lutscher, “Existence of Weak Solutions for a Hyperbolic Model of Chemosensitive Movement”, Journal of Mathematical Analysis and Applications, 260:1 (2001), 173  crossref
    85. LAURENT GOSSE, “A WELL-BALANCED SCHEME USING NON-CONSERVATIVE PRODUCTS DESIGNED FOR HYPERBOLIC SYSTEMS OF CONSERVATION LAWS WITH SOURCE TERMS”, Math. Models Methods Appl. Sci, 11:02 (2001), 339  crossref
    86. João-Paulo Dias, Philippe G. LeFloch, “Some existence results for conservation laws with source-term”, Math Meth Appl Sci, 25:13 (2002), 1149  crossref  mathscinet  isi
    87. Cristelle Barillon, Georgy M. Makhviladze, Vitaly A. Volpert, “existence of solutions for an elliptic-algebraic system describing heat explosion in a two-phase medium”, ESAIM: M2AN, 34:3 (2002), 555  crossref
    88. Kenneth Hvistendahl Karlsen, Nils Henrik Risebro, “Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients”, ESAIM: M2AN, 35:2 (2002), 239  crossref
    89. Kenneth Hvistendahl Karlsen, Nils Henrik Risebro, “A note on front tracking and the equivalence between viscosity solutions of Hamilton–Jacobi equations and entropy solutions of scalar conservation laws”, Nonlinear Analysis: Theory, Methods & Applications, 50:4 (2002), 455  crossref
    90. Steinar Evje, Kenneth H Karlsen, “An Error Estimate for Viscous Approximate Solutions of Degenerate Parabolic Equations”, Journal of Nonlinear Mathematical Physics, 9:3 (2002), 262  crossref
    91. Yongqian Zhang, “Steady supersonic flow past an almost straight wedge with large vertex angle”, Journal of Differential Equations, 192:1 (2003), 1  crossref
    92. Gui-Qiang Chen, David H Wagner, “Global entropy solutions to exothermically reacting, compressible Euler equations”, Journal of Differential Equations, 191:2 (2003), 277  crossref
    93. K.T. Joseph, P.L. Sachdev, “Exact solutions for some non-conservative hyperbolic systems”, International Journal of Non-Linear Mechanics, 38:9 (2003), 1377  crossref
    94. Laurent Gosse, “Time-Splitting Schemes and Measure Source Terms for a Quasilinear Relaxing System”, Math. Models Methods Appl. Sci, 13:08 (2003), 1081  crossref
    95. Carlos Par�s, Manuel Castro, “On the well-balance property of Roe's method for nonconservative hyperbolic systems. applications to shallow-water systems”, M2AN, 38:5 (2004), 821  crossref
    96. K. T. Joseph, “Large time behaviour of solutions of a system of generalized Burgers equation”, Proc Math Sci, 115:4 (2005), 509  crossref  mathscinet  zmath
    97. Ioan R. Ionescu, Thomas Lachand-Robert, “Generalized Cheeger sets related to landslides”, Calc Var, 23:2 (2005), 227  crossref  mathscinet  zmath  isi
    98. Fuensanta Andreu, Vicent Caselles, José M. Mazón, “A Strongly Degenerate Quasilinear Equation: the Parabolic Case”, Arch Rational Mech Anal, 176:3 (2005), 415  crossref  mathscinet  zmath  isi
    99. V.G. Danilov, V.M. Shelkovich, “Dynamics of propagation and interaction of -shock waves in conservation law systems”, Journal of Differential Equations, 211:2 (2005), 333  crossref
    100. JULIA EHRT, JÖRG HÄRTERICH, “ASYMPTOTIC BEHAVIOR OF SPATIALLY INHOMOGENEOUS BALANCE LAWS”, J. Hyper. Differential Equations, 02:03 (2005), 645  crossref
    101. Issam S. Strub, Alexandre M. Bayen, “Weak formulation of boundary conditions for scalar conservation laws: an application to highway traffic modelling”, Int J Robust Nonlinear Control, 16:16 (2006), 733  crossref  mathscinet  zmath  isi
    102. V.M. Shelkovich, “The Riemann problem admitting δ-, -shocks, and vacuum states (the vanishing viscosity approach)”, Journal of Differential Equations, 231:2 (2006), 459  crossref
    103. E.Yu. Panov, V.M. Shelkovich, “-Shock waves as a new type of solutions to systems of conservation laws”, Journal of Differential Equations, 228:1 (2006), 49  crossref
    104. Gui-Qiang Chen, Stéphane Junca, Michel Rascle, “Validity of nonlinear geometric optics for entropy solutions of multidimensional scalar conservation laws”, Journal of Differential Equations, 222:2 (2006), 439  crossref
    105. Raimund Bürger, Aníbal Coronel, Mauricio Sepúlveda, “On an upwind difference scheme for strongly degenerate parabolic equations modelling the settling of suspensions in centrifuges and non-cylindrical vessels”, Applied Numerical Mathematics, 56:10-11 (2006), 1397  crossref
    106. Andrea Cianchi, Nicola Fusco, “Steiner symmetric extremals in Pólya–Szegö-type inequalities”, Advances in Mathematics, 203:2 (2006), 673  crossref
    107. S. N. ANTONTSEV, G. GAGNEUX, R. LUCE, G. VALLET, “A NON-STANDARD FREE BOUNDARY PROBLEM ARISING FROM STRATIGRAPHY”, Anal. Appl, 04:03 (2006), 209  crossref
    108. V. M. Shelkovich, “The Rankine–Hugoniot conditions and balance laws for $\delta$-shocks”, J. Math. Sci., 151:1 (2008), 2781–2792  mathnet  crossref  mathscinet  zmath  elib  elib
    109. Gui-Qiang Chen, Yongqian Zhang, Dianwen Zhu, “Stability of Compressible Vortex Sheets in Steady Supersonic Euler Flows over Lipschitz Walls”, SIAM J Math Anal, 38:5 (2007), 1660  crossref  mathscinet  zmath  isi
    110. M. J. Castro Díaz, T. Chacón Rebollo, E. D. Fernández-Nieto, Carlos Parés, “On Well-Balanced Finite Volume Methods for Nonconservative Nonhomogeneous Hyperbolic Systems”, SIAM J Sci Comput, 29:3 (2007), 1093  crossref  mathscinet  zmath  isi
    111. Bec, J, “Burgers turbulence”, Physics Reports-Review Section of Physics Letters, 447:1–2 (2007), 1  isi  elib
    112. María Luz Muñoz-Ruiz, Carlos Parés, “Godunov method for nonconservative hyperbolic systems”, ESAIM: M2AN, 41:1 (2007), 169  crossref
    113. Matania Ben-Artzi, Philippe G. LeFloch, “Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds”, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 24:6 (2007), 989  crossref
    114. Raimund Bürger, Ricardo Ruiz, Kai Schneider, Mauricio A. Sepúlveda, “Fully adaptive multiresolution schemes for strongly degenerate parabolic equations with discontinuous flux”, J Eng Math, 60:3-4 (2008), 365  crossref  mathscinet  zmath  isi  elib
    115. V. M. Shelkovich, “$\delta$- and $\delta'$-shock wave types of singular solutions of systems of conservation laws and transport and concentration processes”, Russian Math. Surveys, 63:3 (2008), 473–546  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    116. V.G. Danilov, D. Mitrovic, “Delta shock wave formation in the case of triangular hyperbolic system of conservation laws”, Journal of Differential Equations, 245:12 (2008), 3704  crossref
    117. F. Andreu, V. Caselles, J.M. Mazón, “Some regularity results on the ‘relativistic’ heat equation”, Journal of Differential Equations, 245:12 (2008), 3639  crossref
    118. M.J. Castro Díaz, E.D. Fernández-Nieto, A.M. Ferreiro, “Sediment transport models in Shallow Water equations and numerical approach by high order finite volume methods”, Computers & Fluids, 37:3 (2008), 299  crossref
    119. K. T. Joseph, “A System of Two Conservation Laws with Flux Conditions and Small Viscosity”, Journal of Applied Analysis, 15:2 (2009), 247  crossref
    120. S.A. Tokareva, E.F. Toro, “HLLC-type Riemann solver for the Baer–Nunziato equations of compressible two-phase flow”, Journal of Computational Physics, 229:10 (2010), 3573  crossref
    121. HÉLÈNE FRANKOWSKA, “ON LeFLOCH'S SOLUTIONS TO THE INITIAL-BOUNDARY VALUE PROBLEM FOR SCALAR CONSERVATION LAWS”, J. Hyper. Differential Equations, 07:03 (2010), 503  crossref
    122. B. ANDREIANOV, M. BENDAHMANE, K. H. KARLSEN, “DISCRETE DUALITY FINITE VOLUME SCHEMES FOR DOUBLY NONLINEAR DEGENERATE HYPERBOLIC-PARABOLIC EQUATIONS”, J. Hyper. Differential Equations, 07:01 (2010), 1  crossref
    123. Boris Andreianov, Kenneth Hvistendahl Karlsen, Nils Henrik Risebro, “A Theory of L 1-Dissipative Solvers for Scalar Conservation Laws with Discontinuous Flux”, Arch Rational Mech Anal, 2011  crossref
    124. S. Albeverio, V. G. Danilov, “Global in time solutions to Kolmogorov-Feller pseudodifferential equations with small parameter”, Russ. J. Math. Phys, 18:1 (2011), 10  crossref
    125. Micol Amar, Virginia De Cicco, “Relaxation of quasi-convex integrals of arbitrary order”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 124:05 (2011), 927  crossref
    126. Patricio Aviles, Yoshikazu Giga, “On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg–Landau type energy for gradient fields”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 129:01 (2011), 1  crossref
    127. Lia Bronsard, Harald Garcke, Barbara Stoth, “A multi-phase Mullins–Sekerka system: matched asymptotic expansions and an implicit time discretisation for the geometric evolution problem”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 128:03 (2011), 481  crossref
    128. K.T. Joseph, Manas R. Sahoo, “Some exact solutions of 3-dimensional zero-pressure gas dynamics system”, Acta Mathematica Scientia, 31:6 (2011), 2107  crossref
    129. Sergio Albeverio, Vladimir Danilov, “Construction of global-in-time solutions to Kolmogorov-Feller pseudodifferential equations with a small parameter using characteristics”, Math. Nachr, 2011, n/a  crossref
    130. C. Bahadoran, “Hydrodynamics and Hydrostatics for a Class of Asymmetric Particle Systems with Open Boundaries”, Commun. Math. Phys, 2012  crossref
    131. Hanchun Yang, Yanyan Zhang, “New developments of delta shock waves and its applications in systems of conservation laws”, Journal of Differential Equations, 2012  crossref
    132. F. James, N. Vauchelet, “Chemotaxis: from kinetic equations to aggregate dynamics”, Nonlinear Differ. Equ. Appl, 2012  crossref
    133. Jimmy Lamboley, Arian Novruzi, Michel Pierre, “Regularity and Singularities of Optimal Convex Shapes in the Plane”, Arch Rational Mech Anal, 2012  crossref
    134. Frank Morgan, Aldo Pratelli, “Existence of isoperimetric regions in
      $${\mathbb{R}^{n}}$$
      with density”, Ann Glob Anal Geom, 2012  crossref
    135. NICOLAS BESSE, “GLOBAL WEAK SOLUTIONS FOR THE RELATIVISTIC WATERBAG CONTINUUM”, Math. Models Methods Appl. Sci, 22:01 (2012), 1150001  crossref
    136. Henrik Kalisch, Darko Mitrović, “Singular solutions of a fully nonlinear 2 × 2 system of conservation laws”, Proceedings of the Edinburgh Mathematical Society, 2012, 1  crossref
    137. P. I. Kogut, R. Manzo, “On Vector-Valued Approximation of State Constrained Optimal Control Problems for Nonlinear Hyperbolic Conservation Laws”, J Dyn Control Syst, 2013  crossref
    138. Ph.G.. LeFloch, Siddhartha Mishra, “Numerical methods with controlled dissipation for small-scale dependent shocks”, Acta Numerica, 23 (2014), 743  crossref
    139. Alberto Bressan, Wen Shen, “A semigroup approach to an integro-differential equation modeling slow erosion”, Journal of Differential Equations, 2014  crossref
    140. Eric Baer, “Minimizers of Anisotropic Surface Tensions Under Gravity: Higher Dimensions via Symmetrization”, Arch Rational Mech Anal, 2014  crossref
    141. Silvia Jerez, Mario Arciga, “Switch flux limiter method for viscous and nonviscous conservation laws”, Applied Mathematics and Computation, 246 (2014), 292  crossref
    142. Ting Zhang, Chun Shen, “The shock wave solution to the Riemann problem for the Burgers equation with the linear forcing term”, Applicable Analysis, 2015, 1  crossref
    143. Gaowei CAO, Kai HU, Xiaozhou YANG, “Formula of global smooth solution for non-homogeneous m-d conservation law with unbounded initial value”, Acta Mathematica Scientia, 35:2 (2015), 508  crossref
    144. Jan Ernest, Ph.G.. LeFloch, Siddhartha Mishra, “Schemes with Well-Controlled Dissipation”, SIAM J. Numer. Anal, 53:1 (2015), 674  crossref
    145. Francois James, Nicolas Vauchelet, “Numerical Methods for One-Dimensional Aggregation Equations”, SIAM J. Numer. Anal, 53:2 (2015), 895  crossref
    146. M.R.. Sahoo, “Generalized solution to a system of conservation laws which is not strictly hyperbolic”, Journal of Mathematical Analysis and Applications, 2015  crossref
    147. Yu. G. Rykov, O. B. Feodoritova, “Systems of quasilinear conservation laws and algorithmization of variational principles”, Comput. Math. Math. Phys., 55:9 (2015), 1554–1566  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    148. Yu. G. Rykov, “On the variational approach to systems of quasilinear conservation laws”, Proc. Steklov Inst. Math., 301 (2018), 213–227  mathnet  crossref  crossref  isi
  • Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:3096
    Full text:675

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018