RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 1999, Volume 190, Number 7, Pages 3–22 (Mi msb413)  

This article is cited in 1 scientific paper (total in 1 paper)

Contractions of affine spherical varieties

I. V. Arzhantsev

M. V. Lomonosov Moscow State University

Abstract: The language of filtrations and contractions is used to describe the class of $G$-varieties obtainable as the total spaces of the construction of contraction applied to affine spherical varieties, which is well-known in invariant theory. These varieties are local models for arbitrary affine $G$-varieties of complexity 1 with a one-dimensional categorical quotient. As examples, reductive algebraic semigroups and three-dimensional $\operatorname{SL}_2$-varieties are considered.

DOI: https://doi.org/10.4213/sm413

Full text: PDF file (316 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 1999, 190:7, 937–954

Bibliographic databases:

UDC: 512.74
MSC: Primary 14L30; Secondary 14M17, 57S25
Received: 06.08.1998

Citation: I. V. Arzhantsev, “Contractions of affine spherical varieties”, Mat. Sb., 190:7 (1999), 3–22; Sb. Math., 190:7 (1999), 937–954

Citation in format AMSBIB
\Bibitem{Arz99}
\by I.~V.~Arzhantsev
\paper Contractions of affine spherical varieties
\jour Mat. Sb.
\yr 1999
\vol 190
\issue 7
\pages 3--22
\mathnet{http://mi.mathnet.ru/msb413}
\crossref{https://doi.org/10.4213/sm413}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1725210}
\zmath{https://zbmath.org/?q=an:0954.14036}
\transl
\jour Sb. Math.
\yr 1999
\vol 190
\issue 7
\pages 937--954
\crossref{https://doi.org/10.1070/sm1999v190n07ABEH000413}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000084021300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0033240353}


Linking options:
  • http://mi.mathnet.ru/eng/msb413
  • https://doi.org/10.4213/sm413
  • http://mi.mathnet.ru/eng/msb/v190/i7/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. Batyrev, F. Haddad, “On the Geometry of $\operatorname{SL}(2)$-Equivariant Flips”, Mosc. Math. J., 8:4 (2008), 621–646  mathnet  crossref  mathscinet  zmath
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:269
    Full text:118
    References:48
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020