RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 1999, Volume 190, Number 7, Pages 41–72 (Mi msb416)  

This article is cited in 1 scientific paper (total in 1 paper)

Existence of boundary values for solutions of degenerate elliptic equations

I. M. Petrushko

Moscow Power Engineering Institute (Technical University)

Abstract: The behaviour near the boundary of the solution of a second-order elliptic equation degenerate at some part of the boundary is discussed. The case is considered when the quadratic form corresponding to the principal part of the differential operator vanishes at the (unit) normal vector to the boundary and the setting of the first boundary-value problem (problem D or problem E) depends on the values of the coefficients of the first derivatives (Keldysh-type degeneracy). Conditions on the solution of the equation necessary and sufficient for the existence of its limit on the part of the boundary on which one sets boundary values in the first boundary-value problem are found. A solution satisfying these conditions proves to have limit also at the remaining part of the boundary. In addition, a closely related problem on the unique solubility of the corresponding boundary-value problem with boundary functions in $L_p$ is studied.

DOI: https://doi.org/10.4213/sm416

Full text: PDF file (370 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 1999, 190:7, 973–1004

Bibliographic databases:

UDC: 517.956
MSC: Primary 35J67, 35J70; Secondary 35J25
Received: 05.10.1998

Citation: I. M. Petrushko, “Existence of boundary values for solutions of degenerate elliptic equations”, Mat. Sb., 190:7 (1999), 41–72; Sb. Math., 190:7 (1999), 973–1004

Citation in format AMSBIB
\Bibitem{Pet99}
\by I.~M.~Petrushko
\paper Existence of boundary values for solutions of degenerate elliptic equations
\jour Mat. Sb.
\yr 1999
\vol 190
\issue 7
\pages 41--72
\mathnet{http://mi.mathnet.ru/msb416}
\crossref{https://doi.org/10.4213/sm416}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1725212}
\zmath{https://zbmath.org/?q=an:0941.35034}
\transl
\jour Sb. Math.
\yr 1999
\vol 190
\issue 7
\pages 973--1004
\crossref{https://doi.org/10.1070/sm1999v190n07ABEH000416}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000084021300003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0033240354}


Linking options:
  • http://mi.mathnet.ru/eng/msb416
  • https://doi.org/10.4213/sm416
  • http://mi.mathnet.ru/eng/msb/v190/i7/p41

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Petrushko I.M., “On Boundary and Initial Values of Solutions of a Second-Order Parabolic Equation That Degenerate on the Domain Boundary”, Dokl. Math., 96:3 (2017), 568–570  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:468
    Full text:69
    References:59
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019