|
This article is cited in 14 scientific papers (total in 14 papers)
Homogenization of attractors of non-linear hyperbolic equations with asymptotically degenerate coefficients
L. S. Pankratova, I. D. Chueshovb a B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine
b V. N. Karazin Kharkiv National University
Abstract:
A non-linear initial-boundary-value problem for a hyperbolic equation with dissipation is considered in a bounded domain $\Omega$
$$
u^\varepsilon _{tt}+\delta u^\varepsilon _t
-\operatorname {div}(a^\varepsilon (x)\nabla u^\varepsilon)
+f(u^\varepsilon)=h^\varepsilon (x),
$$
where $\delta>0$ and the coefficient $a^\varepsilon (x)$ is of order $\varepsilon ^{3+\gamma}$ $(0\leqslant \gamma<1)$ on the union of spherical annuli of thickness $d_\varepsilon=d\varepsilon^{2+\gamma}$. The annuli are periodically, with period $\varepsilon$, distributed in a bounded domain $\Omega$. Outside the union of the annuli $a^\varepsilon (x)\equiv 1$. The asymptotic behaviour of the solutions and the global attractor of the problem are studied as $\varepsilon \to 0$. It is shown that the homogenization of the problem on each finite time interval leads to a system consisting of a non-linear hyperbolic equation and an ordinary second-order differential equation (with respect to $t$). It is also shown that the global attractor of the initial problem approaches in a certain sense a weak global attractor of the homogenized problem.
DOI:
https://doi.org/10.4213/sm427
Full text:
PDF file (406 kB)
References:
PDF file
HTML file
English version:
Sbornik: Mathematics, 1999, 190:9, 1325–1352
Bibliographic databases:
UDC:
517.953
MSC: 35B27, 35B40, 35L70 Received: 05.10.1998
Citation:
L. S. Pankratov, I. D. Chueshov, “Homogenization of attractors of non-linear hyperbolic equations with asymptotically degenerate coefficients”, Mat. Sb., 190:9 (1999), 99–126; Sb. Math., 190:9 (1999), 1325–1352
Citation in format AMSBIB
\Bibitem{PanChu99}
\by L.~S.~Pankratov, I.~D.~Chueshov
\paper Homogenization of attractors of non-linear hyperbolic equations with asymptotically degenerate coefficients
\jour Mat. Sb.
\yr 1999
\vol 190
\issue 9
\pages 99--126
\mathnet{http://mi.mathnet.ru/msb427}
\crossref{https://doi.org/10.4213/sm427}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1725227}
\zmath{https://zbmath.org/?q=an:0940.35029}
\transl
\jour Sb. Math.
\yr 1999
\vol 190
\issue 9
\pages 1325--1352
\crossref{https://doi.org/10.1070/sm1999v190n09ABEH000427}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000085043300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0033236627}
Linking options:
http://mi.mathnet.ru/eng/msb427https://doi.org/10.4213/sm427 http://mi.mathnet.ru/eng/msb/v190/i9/p99
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Efendiev, M, “Attractors of the reaction-diffusion systems with rapidly oscillating coefficients and their homogenization”, Annales de l Institut Henri Poincare-Analyse Non Lineaire, 19:6 (2002), 961
-
A. M. Rekalo, I. D. Chueshov, “Global attractor of a contact parabolic problem in a thin
two-layer domain”, Sb. Math., 195:1 (2004), 97–119
-
Pankratov L., Chueshov I., “Non-linear acoustic oscillations in a strongly inhomogeneous medium”, 10Th International Conference on Mathematical Methods in Electromagnetic Theory, Conference Proceedings, 2004, 41–44
-
Zelik, S, “Global averaging and parametric resonances in damped semilinear wave equations”, Proceedings of the Royal Society of Edinburgh Section A-Mathematics, 136 (2006), 1053
-
Cavalcanti, MM, “Homogenization for a nonlinear wave equation in domains with holes of small capacity”, Discrete and Continuous Dynamical Systems, 16:4 (2006), 721
-
Chepyzhov, VV, “Averaging of nonautonomous damped wave equations with singularly oscillating external forces”, Journal de Mathematiques Pures et Appliquees, 90:5 (2008), 469
-
Jean Louis Woukeng, David Dongo, “Multiscale homogenization of nonlinear hyperbolic equations with several time scales”, Acta Mathematica Scientia, 31:3 (2011), 843
-
Khrabustovskyi A., “Periodic Elliptic Operators with Asymptotically Preassigned Spectrum”, Asymptotic Anal., 82:1-2 (2013), 1–37
-
Khrabustovskyi A., Plum M., “Spectral properties of an elliptic operator with double-contrast coefficients near a hyperplane”, Asymptotic Anal., 98:1-2 (2016), 91–130
-
Bekmaganbetov K.A. Chechkin G.A. Chepyzhov V.V. Goritsky A.Yu., “Homogenization of trajectory attractors of 3D Navier–Stokes system with randomly oscillating force”, Discret. Contin. Dyn. Syst., 37:5 (2017), 2375–2393
-
Chechkin G.A. Chepyzhov V.V. Pankratov L.S., “Homogenization of Trajectory Attractors of Ginzburg-Landau Equations With Randomly Oscillating Terms”, Discrete Contin. Dyn. Syst.-Ser. B, 23:3 (2018), 1133–1154
-
Bekmaganbetov K.A. Chechkin G.A. Chepyzhov V.V., “Weak Convergence of Attractors of Reaction-Diffusion Systems With Randomly Oscillating Coefficients”, Appl. Anal., 98:1-2, SI (2019), 256–271
-
Cooper Sh., Savostianov A., “Homogenisation With Error Estimates of Attractors For Damped Semi-Linear Anisotropic Wave Equations”, Adv. Nonlinear Anal., 9:1 (2020), 745–787
-
Bekmaganbetov K.A. Chechkin G.A. Chepyzhov V.V., “Strong Convergence of Trajectory Attractors For Reaction-Diffusion Systems With Random Rapidly Oscillating Terms”, Commun. Pure Appl. Anal, 19:5 (2020), 2419–2443
|
Number of views: |
This page: | 344 | Full text: | 114 | References: | 51 | First page: | 1 |
|