|
This article is cited in 4 scientific papers (total in 4 papers)
Convergence of regularized traces of powers of the Laplace–Beltrami operator with potential on the sphere $S^n$
A. N. Bobrov, V. E. Podolskii M. V. Lomonosov Moscow State University
Abstract:
For the Laplace–Beltrami operator $-\Delta$ on the sphere $S^n$ perturbed by the operator of multiplication by an infinitely smooth complex-valued function $q$, the convergence without brackets of regularized traces
$$
\sum_k(\mu_k^\alpha -\lambda_k^\alpha-\sum_j\chi_j(\alpha )\lambda_k^{k_j(\alpha)}),
$$
is studied, where the $\mu_k$ and the $\lambda_k$ are the eigenvalues of the operators $-\Delta+q$ and $-\Delta$, respectively. Sharp estimates of $\alpha$ in the cases of absolute and conditional convergence are obtained. Explicit formulae for the coefficients $\chi_j$ are obtained for odd potentials $q$.
DOI:
https://doi.org/10.4213/sm430
Full text:
PDF file (278 kB)
References:
PDF file
HTML file
English version:
Sbornik: Mathematics, 1999, 190:10, 1401–1415
Bibliographic databases:
UDC:
517.956.227
MSC: 58G25, 58G03, 35P20 Received: 07.05.1998
Citation:
A. N. Bobrov, V. E. Podolskii, “Convergence of regularized traces of powers of the Laplace–Beltrami operator with potential on the sphere $S^n$”, Mat. Sb., 190:10 (1999), 3–16; Sb. Math., 190:10 (1999), 1401–1415
Citation in format AMSBIB
\Bibitem{BobPod99}
\by A.~N.~Bobrov, V.~E.~Podolskii
\paper Convergence of regularized traces of powers of the~Laplace--Beltrami operator with potential on the sphere~$S^n$
\jour Mat. Sb.
\yr 1999
\vol 190
\issue 10
\pages 3--16
\mathnet{http://mi.mathnet.ru/msb430}
\crossref{https://doi.org/10.4213/sm430}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1740154}
\zmath{https://zbmath.org/?q=an:0947.58023}
\transl
\jour Sb. Math.
\yr 1999
\vol 190
\issue 10
\pages 1401--1415
\crossref{https://doi.org/10.1070/sm1999v190n10ABEH000430}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000085043300007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0033236628}
Linking options:
http://mi.mathnet.ru/eng/msb430https://doi.org/10.4213/sm430 http://mi.mathnet.ru/eng/msb/v190/i10/p3
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. A. Sadovnichii, V. E. Podolskii, “Traces of operators”, Russian Math. Surveys, 61:5 (2006), 885–953
-
Zykova T.V., “The regularized trace of the perturbed Laplace–Beltrami operator on a certain family of manifolds”, Doklady Mathematics, 83:2 (2011), 225–226
-
T. V. Zykova, “Regularized Trace of the Perturbed Laplace–Beltrami Operator on Two-Dimensional Manifolds with Closed Geodesics”, Math. Notes, 93:3 (2013), 397–411
-
A. I. Kozko, “O nekotorykh priznakakh skhodimosti dlya znakopostoyannykh i znakochereduyuschikhsya ryadov”, Chebyshevskii sb., 18:1 (2017), 123–133
|
Number of views: |
This page: | 334 | Full text: | 144 | References: | 56 | First page: | 1 |
|