RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1965, Volume 68(110), Number 1, Pages 81–110 (Mi msb4389)  

This article is cited in 7 scientific papers (total in 7 papers)

Asymptotics of the discrete spectrum of the operator $w"(x)-\lambda^2p(x)w(x)$

M. V. Fedoryuk


Full text: PDF file (2711 kB)

Bibliographic databases:
UDC: 517.43
Received: 30.03.1964

Citation: M. V. Fedoryuk, “Asymptotics of the discrete spectrum of the operator $w"(x)-\lambda^2p(x)w(x)$”, Mat. Sb. (N.S.), 68(110):1 (1965), 81–110

Citation in format AMSBIB
\Bibitem{Fed65}
\by M.~V.~Fedoryuk
\paper Asymptotics of the discrete spectrum of the operator $w''(x)-\lambda^2p(x)w(x)$
\jour Mat. Sb. (N.S.)
\yr 1965
\vol 68(110)
\issue 1
\pages 81--110
\mathnet{http://mi.mathnet.ru/msb4389}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=186860}
\zmath{https://zbmath.org/?q=an:0238.34032}


Linking options:
  • http://mi.mathnet.ru/eng/msb4389
  • http://mi.mathnet.ru/eng/msb/v110/i1/p81

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. A. Evgrafov, M. V. Fedoryuk, “Asymptotic behaviour as $\lambda\to\infty$ of the solution of the equation $w"(z)-p(z,\lambda)w(z)=0$ in the complex $z$-plane”, Russian Math. Surveys, 21:1 (1966), 1–48  mathnet  crossref  mathscinet  zmath
    2. M. A. Brodskii, “Asimptoticheskie formuly obrascheniya spektralnykh dannykh uravnenii $y"(r)+[\lambda^2_{lk}\cdot f^2(r)-\dfrac{l(l+1)}{r^2}]y(r)=0$”, UMN, 31:4(190) (1976), 253–254  mathnet  mathscinet  zmath
    3. P. V. Elyutin, O. V. Smirnova, “On the quasi-classical limit of the quadratic susceptibility”, Theoret. and Math. Phys., 119:1 (1999), 471–480  mathnet  crossref  crossref  zmath  isi  elib
    4. S. A. Albeverio, S. Yu. Dobrokhotov, E. S. Semenov, “Splitting Formulas for the Higher and Lower Energy Levels of the One-Dimensional Schrödinger Operator”, Theoret. and Math. Phys., 138:1 (2004), 98–106  mathnet  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. D. A. Popov, “Asymptotic behaviour of the positive spectrum of a family of periodic Sturm–Liouville problems under continuous passage from a definite problem to an indefinite one”, Izv. Math., 73:3 (2009), 579–610  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    6. A. Yu. Anikin, “Librations and ground-state splitting in a multidimensional double-well problem”, Theoret. and Math. Phys., 175:2 (2013), 609–619  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    7. K. S. Alybaev, A. B. Murzabaeva, “Postroenie oblastei prityazheniya pri vyrozhdenii singulyarno vozmuschennykh uravnenii”, Mezhdunar. nauch.-issled. zhurn., 2018, no. 9(75), 7–11  mathnet  crossref
  • Математический сборник (новая серия) - 1964–1988
    Number of views:
    This page:330
    Full text:150

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020