RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2008, Volume 199, Number 10, Pages 127–158 (Mi msb4524)  

This article is cited in 1 scientific paper (total in 1 paper)

Local formulae for characteristic classes of a principal $\mathrm{GL}_n$-bundle

G. I. Sharygin

Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)

Abstract: Let $P$ be a principal $\mathrm{GL}_n$-bundle over a smooth compact manifold $X$ given by a finite atlas $\mathscr U=\{U_\alpha\}$ with transition functions $g_{\alpha\beta}$. A method is described for constructing the cocycles corresponding to the Chern classes of the bundle $P$ in the Čech complex with coefficients in the sheaf of de Rham forms on the manifold associated with the atlas $\mathscr U$. It is proved that for every rational characteristic class $c$ of the bundle $P$ there exists a cocycle in the aforementioned complex depending only on the gluing functions and corresponding to the class $c$ under the canonical identification of the cohomologies of the complex and the de Rham cohomologies of the manifold $X$ (a simple algorithm is given that enables one to calculate this cocycle explicitly). One of the key ideas leading to these results is the idea of using the notion of a twisting cochain for constructing the cocycles.
Bibliography: 14 titles.

DOI: https://doi.org/10.4213/sm4524

Full text: PDF file (692 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2008, 199:10, 1547–1577

Bibliographic databases:

UDC: 515.145.253+512.7
MSC: Primary 55R40; Secondary 55N30, 55U15, 57R20, 58A12
Received: 26.02.2008 and 17.06.2008

Citation: G. I. Sharygin, “Local formulae for characteristic classes of a principal $\mathrm{GL}_n$-bundle”, Mat. Sb., 199:10 (2008), 127–158; Sb. Math., 199:10 (2008), 1547–1577

Citation in format AMSBIB
\Bibitem{Sha08}
\by G.~I.~Sharygin
\paper Local formulae for characteristic
classes of a~principal $\mathrm{GL}_n$-bundle
\jour Mat. Sb.
\yr 2008
\vol 199
\issue 10
\pages 127--158
\mathnet{http://mi.mathnet.ru/msb4524}
\crossref{https://doi.org/10.4213/sm4524}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2473815}
\zmath{https://zbmath.org/?q=an:1160.57025}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2008SbMat.199.1547S}
\elib{http://elibrary.ru/item.asp?id=20359292}
\transl
\jour Sb. Math.
\yr 2008
\vol 199
\issue 10
\pages 1547--1577
\crossref{https://doi.org/10.1070/SM2008v199n10ABEH003972}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000262711500011}
\elib{http://elibrary.ru/item.asp?id=13595860}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-66149096293}


Linking options:
  • http://mi.mathnet.ru/eng/msb4524
  • https://doi.org/10.4213/sm4524
  • http://mi.mathnet.ru/eng/msb/v199/i10/p127

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Kubarski J., “Cyclic Cech-Hochschild Bicomplex”, Miskolc Math. Notes, 14:2 (2013), 713–720  mathscinet  zmath  isi  elib
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:307
    Full text:93
    References:27
    First page:10

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019