RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Подписка
Правила для авторов
Лицензионный договор
Загрузить рукопись
Историческая справка

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Матем. сб.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Матем. сб., 2008, том 199, номер 9, страницы 3–96 (Mi msb4529)  

Эта публикация цитируется в 32 научных статьях (всего в 32 статьях)

Максимально симметричные клеточные разбиения поверхностей и их накрытия

Е. А. Кудрявцева, И. М. Никонов, А. Т. Фоменко

Московский государственный университет им. М. В. Ломоносова, механико-математический факультет

Аннотация: Рассматриваются правильные (т.е. максимально симметричные) клеточные разбиения замкнутых ориентированных двумерных поверхностей, т.е. правильные карты, или правильные абстрактные многогранники. Эти объекты известны и как максимально симметричные ориентированные атомы. Атом назовем приводимым, если он является разветвленным накрытием над другим атомом с ветвлениями в вершинах разбиения и (или) центрах граней. Следующие две проблемы возникли в теории интегрируемых гамильтоновых систем: описать неприводимые максимально симметричные атомы; описать все максимально симметричные атомы, накрывающие данный неприводимый максимально симметричный атом. В настоящей работе эти проблемы решаются в важных случаях. В качестве приложения перечисляются все максимально симметричные ориентированные атомы следующих типов: имеющие не более 30 ребер; имеющие не более шести граней; имеющие $p$ или $2p$ ребер, где $p$ – простое число.
Библиография: 52 названия.

DOI: https://doi.org/10.4213/sm4529

Полный текст: PDF файл (1507 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Sbornik: Mathematics, 2008, 199:9, 1263–1353

Реферативные базы данных:

Тип публикации: Статья
УДК: 515.164.8+519.177.3
MSC: Primary 57M20, 57M12; Secondary 37J35, 70H06
Поступила в редакцию: 28.02.2008

Образец цитирования: Е. А. Кудрявцева, И. М. Никонов, А. Т. Фоменко, “Максимально симметричные клеточные разбиения поверхностей и их накрытия”, Матем. сб., 199:9 (2008), 3–96; E. A. Kudryavtseva, I. M. Nikonov, A. T. Fomenko, “Maximally symmetric cell decompositions of surfaces and their coverings”, Sb. Math., 199:9 (2008), 1263–1353

Цитирование в формате AMSBIB
\RBibitem{KudNikFom08}
\by Е.~А.~Кудрявцева, И.~М.~Никонов, А.~Т.~Фоменко
\paper Максимально симметричные клеточные разбиения поверхностей и их накрытия
\jour Матем. сб.
\yr 2008
\vol 199
\issue 9
\pages 3--96
\mathnet{http://mi.mathnet.ru/msb4529}
\crossref{https://doi.org/10.4213/sm4529}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2466854}
\zmath{https://zbmath.org/?q=an:1163.37018}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2008SbMat.199.1263K}
\elib{http://elibrary.ru/item.asp?id=20359353}
\transl
\by E.~A.~Kudryavtseva, I.~M.~Nikonov, A.~T.~Fomenko
\paper Maximally symmetric cell decompositions of surfaces
and their coverings
\jour Sb. Math.
\yr 2008
\vol 199
\issue 9
\pages 1263--1353
\crossref{https://doi.org/10.1070/SM2008v199n09ABEH003962}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000262711500001}
\elib{http://elibrary.ru/item.asp?id=13994614}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-66149137190}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/msb4529
  • https://doi.org/10.4213/sm4529
  • http://mi.mathnet.ru/rus/msb/v199/i9/p3

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. О. А. Загрядский, Е. А. Кудрявцева, Д. А. Федосеев, “Обобщение теоремы Бертрана на поверхности вращения”, Матем. сб., 203:8 (2012), 39–78  mathnet  crossref  mathscinet  zmath  elib; O. A. Zagryadskii, E. A. Kudryavtseva, D. A. Fedoseev, “A generalization of Bertrand's theorem to surfaces of revolution”, Sb. Math., 203:8 (2012), 1112–1150  crossref  isi
    2. Кудрявцева Е.А., Фоменко А.Т., “Группы симметрий правильных функций Морса на поверхностях”, Докл. РАН, 446:6 (2012), 615–617  mathscinet  zmath  elib; Kudryavtseva E.A., Fomenko A.T., “Symmetries groups of nice Morse functions on surfaces”, Dokl. Math., 86:2 (2012), 691–693  crossref  mathscinet  zmath  isi  elib  scopus
    3. Fomenko A.T. Konyaev A.Yu., “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topology Appl., 159:7 (2012), 1964–1975  crossref  mathscinet  zmath  isi  elib  scopus
    4. Н. В. Волчанецкий, И. М. Никонов, “Максимально симметричные высотные атомы”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2013, № 2, 3–6  mathnet  mathscinet  elib; N. V. Volchanetskii, I. M. Nikonov, “Maximally symmetric height atoms”, Moscow University Mathematics Bulletin, 68:2 (2013), 83–86  crossref
    5. Е. А. Кудрявцева, А. Т. Фоменко, “Любая конечная группа является группой симметрий некоторой карты (“атома”-бифуркации)”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2013, № 3, 21–29  mathnet  mathscinet; E. A. Kudryavtseva, A. T. Fomenko, “Each finite group is a symmetry group of some map (an “Atom”-bifurcation)”, Moscow University Mathematics Bulletin, 68:3 (2013), 148–155  crossref
    6. Н. С. Славина, “Топологическая классификация систем типа Ковалевской–Яхьи”, Матем. сб., 205:1 (2014), 105–160  mathnet  crossref  mathscinet  zmath  adsnasa  elib; N. S. Slavina, “Topological classification of systems of Kovalevskaya-Yehia type”, Sb. Math., 205:1 (2014), 101–155  crossref  isi
    7. С. С. Николаенко, “Топологическая классификация систем Чаплыгина в динамике твердого тела в жидкости”, Матем. сб., 205:2 (2014), 75–122  mathnet  crossref  mathscinet  zmath  adsnasa  elib; S. S. Nikolaenko, “A topological classification of the Chaplygin systems in the dynamics of a rigid body in a fluid”, Sb. Math., 205:2 (2014), 224–268  crossref  isi
    8. И. К. Козлов, “Топология слоения Лиувилля для интегрируемого случая Ковалевской на алгебре Ли $\mathrm{so}(4)$”, Матем. сб., 205:4 (2014), 79–120  mathnet  crossref  mathscinet  zmath  adsnasa  elib; I. K. Kozlov, “The topology of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra so(4)”, Sb. Math., 205:4 (2014), 532–572  crossref  isi
    9. В. В. Фокичева, “Классификация биллиардных движений в областях, ограниченных софокусными параболами”, Матем. сб., 205:8 (2014), 139–160  mathnet  crossref  mathscinet  zmath  adsnasa  elib; V. V. Fokicheva, “Classification of billiard motions in domains bounded by confocal parabolas”, Sb. Math., 205:8 (2014), 1201–1221  crossref  isi
    10. В. В. Фокичева, “Описание особенностей системы бильярда в областях, ограниченных софокусными эллипсами или гиперболами”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2014, № 4, 18–27  mathnet  mathscinet; V. V. Fokicheva, “Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas”, Moscow University Mathematics Bulletin, 69:4 (2014), 148–158  crossref
    11. В. В. Фокичева, “Топологическая классификация биллиардов в локально плоских областях, ограниченных дугами софокусных квадрик”, Матем. сб., 206:10 (2015), 127–176  mathnet  crossref  mathscinet  zmath  adsnasa  elib; V. V. Fokicheva, “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Sb. Math., 206:10 (2015), 1463–1507  crossref  isi
    12. Martynchuk N.N., “Semi-Local Liouville Equivalence of Complex Hamiltonian Systems Defined By Rational Hamiltonian”, Topology Appl., 191 (2015), 119–130  crossref  mathscinet  zmath  isi  elib  scopus
    13. Fomenko A.T., Kantonistova E.O., “Topological Classification of Geodesic Flows on Revolution 2-Surfaces with Potential”, Continuous and Distributed Systems II, Studies in Systems, Decision and Control, 30, eds. Sadovnichiy V., Zgurovsky M., Springer Int Publishing Ag, 2015, 11–27  crossref  mathscinet  zmath  isi  scopus
    14. Н. Н. Мартынчук, “О комплексных гамильтоновых системах в $\mathbb{C^2}$ с лорановским гамильтонианом малой степени”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2015, № 2, 3–9  mathnet  mathscinet  elib; N. N. Martynchuk, “Complex Hamiltonian systems on $\mathbb{C^2}$ with Hamiltonian function of low Laurent degree”, Moscow University Mathematics Bulletin, 70:2 (2015), 53–59  crossref
    15. В. А. Шмаров, “Минимальные линейные функции Морса на орбитах в алгебрах Ли”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2015, № 2, 9–16  mathnet  mathscinet; V. A. Shmarov, “Minimal linear Morse functions on the orbits in Lie algebras”, Moscow University Mathematics Bulletin, 70:2 (2015), 60–67  crossref
    16. И. Н. Шнурников, “Реализуемость особых уровней функций Морса объединением геодезических”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2015, № 6, 45–48  mathnet  mathscinet; I. N. Shnurnikov, “Realizability of singular levels of Morse functions as unions of geodesies”, Moscow University Mathematics Bulletin, 70:6 (2015), 270–273  crossref
    17. Е. О. Кантонистова, “Топологическая классификация интегрируемых гамильтоновых систем на поверхностях вращения в потенциальном поле”, Матем. сб., 207:3 (2016), 47–92  mathnet  crossref  mathscinet  adsnasa  elib; E. O. Kantonistova, “Topological classification of integrable Hamiltonian systems in a potential field on surfaces of revolution”, Sb. Math., 207:3 (2016), 358–399  crossref  isi
    18. Д. А. Пермяков, “Регулярная гомотопность погружений графов в поверхности”, Матем. сб., 207:6 (2016), 93–112  mathnet  crossref  mathscinet  adsnasa  elib; D. A. Permyakov, “Regular homotopy for immersions of graphs into surfaces”, Sb. Math., 207:6 (2016), 854–872  crossref  isi
    19. И. М. Никонов, “Высотные атомы с транзитивной на вершинах группой симметрий”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2016, № 6, 17–25  mathnet  mathscinet; I. M. Nikonov, “Height atoms whose symmetry groups act transitively on their vertex sets”, Moscow University Mathematics Bulletin, 71:6 (2016), 233–241  crossref  isi
    20. М. А. Тужилин, “Особенности интегрируемых гамильтоновых систем с одинаковым слоением на границе. Бесконечная серия”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2016, № 5, 14–20  mathnet  mathscinet; M. A. Tuzhilin, “Singularities of integrable Hamiltonian systems with the same boundary foliation. An infinite series”, Moscow University Mathematics Bulletin, 71:5 (2016), 185–190  crossref  isi
    21. В. А. Кибкало, “Топология аналога случая интегрируемости Ковалевской на алгебре Ли $\mathrm{so}(4)$ при нулевой постоянной площадей”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2016, № 3, 46–50  mathnet  mathscinet; V. A. Kibkalo, “The topology of the analog of Kovalevskaya integrability case on the Lie algebra $\mathrm{so}(4)$ under zero area integral”, Moscow University Mathematics Bulletin, 71:3 (2016), 119–123  crossref  isi
    22. Д. А. Федосеев, А. Т. Фоменко, “Некомпактные особенности интегрируемых динамических систем”, Фундамент. и прикл. матем., 21:6 (2016), 217–243  mathnet
    23. А. И. Жила, “Шар Чаплыгина с ротором: невырожденность особых точек”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2016, № 2, 3–12  mathnet  mathscinet  elib; A. I. Zhila, “Chaplygin's ball with a rotor: Non-degeneracy of singular points”, Moscow University Mathematics Bulletin, 71:2 (2016), 45–54  crossref  isi
    24. В. В. Ведюшкина (Фокичева), А. Т. Фоменко, “Интегрируемые топологические биллиарды и эквивалентные динамические системы”, Изв. РАН. Сер. матем., 81:4 (2017), 20–67  mathnet  crossref  mathscinet  adsnasa  elib; V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable topological billiards and equivalent dynamical systems”, Izv. Math., 81:4 (2017), 688–733  crossref  isi
    25. Д. С. Тимонина, “Лиувиллева классификация интегрируемых геодезических потоков на торе вращения в потенциальном поле”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2017, № 3, 35–43  mathnet  mathscinet  elib; D. S. Timonina, “Liouville classification of integrable geodesic flows on a torus of revolution in a potential field”, Moscow University Mathematics Bulletin, 72:3 (2017), 121–128  crossref  isi
    26. Timonina D.S., “Topological Classification of Integrable Geodesic Flows in a Potential Field on the Torus of Revolution”, Lobachevskii J. Math., 38:6 (2017), 1108–1120  crossref  mathscinet  zmath  isi  scopus
    27. А. И. Жила, “Сравнение системы “шар Чаплыгина с ротором” и системы Жуковского с точки зрения грубой лиувиллевой эквивалентности”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2017, № 6, 28–33  mathnet  mathscinet; A. I. Zhila, “Comparison of the system “Chaplygin ball with a rotor” and the Zhukovskii system from the rough Liouville equivalence point of view”, Moscow University Mathematics Bulletin, 72:6 (2017), 245–250  crossref  isi
    28. В. А. Трифонова, “Высотные частично симметричные атомы”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2018, № 2, 33–41  mathnet; V. A. Trifonova, “Partially symmetric height atoms”, Moscow University Mathematics Bulletin, 73:2 (2018), 71–78  crossref  isi
    29. В. А. Москвин, “Топология слоений Лиувилля интегрируемого бильярда в невыпуклых областях”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2018, № 3, 21–29  mathnet; V. A. Moskvin, “Topology of Liouville bundles of integrable billiard in non-convex domains”, Moscow University Mathematics Bulletin, 73:3 (2018), 103–110  crossref  isi
    30. Д. С. Тимонина, “Лиувиллева классификация интегрируемых геодезических потоков в потенциальном поле на двумерных многообразиях вращения: торе и бутылке Клейна”, Матем. сб., 209:11 (2018), 103–136  mathnet  crossref  adsnasa  elib; D. S. Timonina, “Liouville classification of integrable geodesic flows in a potential field on two-dimensional manifolds of revolution: the torus and the Klein bottle”, Sb. Math., 209:11 (2018), 1644–1676  crossref  isi
    31. В. В. Ведюшкина, И. С. Харчева, “Биллиардные книжки моделируют все трехмерные бифуркации интегрируемых гамильтоновых систем”, Матем. сб., 209:12 (2018), 17–56  mathnet  crossref  adsnasa  elib; V. V. Vedyushkina, I. S. Kharcheva, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems”, Sb. Math., 209:12 (2018), 1690–1727  crossref  isi
    32. В. В. Ведюшкина, “Инварианты Фоменко–Цишанга невыпуклых топологических биллиардов”, Матем. сб., 210:3 (2019), 17–74  mathnet  crossref  elib
  • Просмотров:
    Эта страница:588
    Полный текст:128
    Литература:42
    Первая стр.:16

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019