RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1963, Volume 62(104), Number 4, Pages 397–468 (Mi msb4607)  

This article is cited in 11 scientific papers (total in 11 papers)

Asymptotic behaviour as $t\to+0$, $x\to\infty$, of the Green's function for equations well-posed in the Petrovsky sense with constant coefficients, and well-posed classes for a solution of the Cauchy problem

M. V. Fedoryuk


Full text: PDF file (5876 kB)

Bibliographic databases:
Received: 26.06.1962

Citation: M. V. Fedoryuk, “Asymptotic behaviour as $t\to+0$, $x\to\infty$, of the Green's function for equations well-posed in the Petrovsky sense with constant coefficients, and well-posed classes for a solution of the Cauchy problem”, Mat. Sb. (N.S.), 62(104):4 (1963), 397–468

Citation in format AMSBIB
\Bibitem{Fed63}
\by M.~V.~Fedoryuk
\paper Asymptotic behaviour as $t\to+0$, $x\to\infty$, of the Green's function for equations well-posed in the Petrovsky sense with constant coefficients, and well-posed classes for a solution of the Cauchy problem
\jour Mat. Sb. (N.S.)
\yr 1963
\vol 62(104)
\issue 4
\pages 397--468
\mathnet{http://mi.mathnet.ru/msb4607}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=172015}
\zmath{https://zbmath.org/?q=an:0152.09704}


Linking options:
  • http://mi.mathnet.ru/eng/msb4607
  • http://mi.mathnet.ru/eng/msb/v104/i4/p397

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. A. Evgrafov, M. M. Postnikov, “Asymptotic behavior of Green's functions for parabolic and elliptic equations with constant coefficients”, Math. USSR-Sb., 11:1 (1970), 1–24  mathnet  crossref  mathscinet  zmath
    2. M. V. Fedoryuk, “The stationary phase method and pseudodifferential operators”, Russian Math. Surveys, 6:1 (1971), 65–115  mathnet  crossref  mathscinet  zmath
    3. L. R. Volevich, S. G. Gindikin, “The cauchy problem and other related problems for convolution equations”, Russian Math. Surveys, 27:4 (1972), 71–160  mathnet  crossref  mathscinet  zmath
    4. S. G. Gindikin, M. V. Fedoryuk, “Asymptotics of the fundamental solution of a Petrovskii parabolic equation with constant coefficients”, Math. USSR-Sb., 20:4 (1973), 519–542  mathnet  crossref  mathscinet  zmath
    5. S. G. Gindikin, M. V. Fedoryuk, “Asimptotika fundamentalnogo resheniya parabolicheskogo uravneniya s postoyannymi koeffitsientami”, UMN, 28:1(169) (1973), 235–236  mathnet  mathscinet  zmath
    6. S. G. Gindikin, M. V. Fedoryuk, “Saddle points of parabolic polynomials”, Math. USSR-Sb., 23:3 (1974), 362–381  mathnet  crossref  mathscinet  zmath
    7. V. P. Palamodov, “The work of G. E. Shilov in the theory of generalized functions and differential equations”, Russian Math. Surveys, 33:4 (1978), 219–235  mathnet  crossref  mathscinet  zmath
    8. Suleimanov N., “On the Exactness of Wiman-Valiron-Type Estimates for the Solutions of Evolutionary Equations”, 253, no. 3, 1980, 541–544  isi
    9. Serdyukova S.I., “Deformation of a breather-type solution after adding a lower order term with a complex coefficient”, Dokl. Math., 80:1 (2009), 463–469  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    10. S. A. Stepin, “Kernel estimates and the regularized trace of the semigroup generated by a potential perturbation of the bi-Laplacian”, Russian Math. Surveys, 66:3 (2011), 635–636  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    11. S. A. Stepin, “Asymptotic estimates for the kernel of the semigroup generated by a perturbation of the biharmonic operator by a potential”, Sb. Math., 203:6 (2012), 893–921  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  • Математический сборник (новая серия) - 1947–1963
    Number of views:
    This page:334
    Full text:150

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019