|
This article is cited in 14 scientific papers (total in 14 papers)
Finite-dimensional limiting dynamics for dissipative parabolic equations
A. V. Romanov All-Russian Institute for Scientific and Technical Information of Russian Academy of Sciences
Abstract:
For a broad class of semilinear parabolic equations with compact attractor $\mathscr A$ in a Banach space $E$ the problem of a description of the limiting phase dynamics (the dynamics on $\mathscr A$) of a corresponding system of ordinary differential equations in $\mathbb R^N$ is solved in purely topological terms. It is established that the limiting dynamics for a parabolic equation is finite-dimensional if and only if its attractor can be embedded in a sufficiently smooth finite-dimensional submanifold $\mathscr M\subset E$. Some other criteria are obtained for the finite dimensionality of the limiting dynamics:
- a) the vector field of the equation satisfies a Lipschitz condition on $\mathscr A$;
- b) the phase semiflow extends on $\mathscr A$ to a Lipschitz flow;
- c) the attractor $\mathscr A$ has a finite-dimensional Lipschitz Cartesian structure.
It is also shown that the vector field of a semilinear parabolic equation is always Holder on the attractor.
DOI:
https://doi.org/10.4213/sm466
Full text:
PDF file (306 kB)
References:
PDF file
HTML file
English version:
Sbornik: Mathematics, 2000, 191:3, 415–429
Bibliographic databases:
UDC:
517.95
MSC: Primary 35K55, 58F12; Secondary 47H06, 58G11, 34D45, 35Q30 Received: 15.04.1998
Citation:
A. V. Romanov, “Finite-dimensional limiting dynamics for dissipative parabolic equations”, Mat. Sb., 191:3 (2000), 99–112; Sb. Math., 191:3 (2000), 415–429
Citation in format AMSBIB
\Bibitem{Rom00}
\by A.~V.~Romanov
\paper Finite-dimensional limiting dynamics for dissipative parabolic equations
\jour Mat. Sb.
\yr 2000
\vol 191
\issue 3
\pages 99--112
\mathnet{http://mi.mathnet.ru/msb466}
\crossref{https://doi.org/10.4213/sm466}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1773256}
\zmath{https://zbmath.org/?q=an:0963.37074}
\transl
\jour Sb. Math.
\yr 2000
\vol 191
\issue 3
\pages 415--429
\crossref{https://doi.org/10.1070/sm2000v191n03ABEH000466}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000088115700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034354568}
Linking options:
http://mi.mathnet.ru/eng/msb466https://doi.org/10.4213/sm466 http://mi.mathnet.ru/eng/msb/v191/i3/p99
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. V. Romanov, “Finite-dimensional dynamics on attractors of non-linear parabolic equations”, Izv. Math., 65:5 (2001), 977–1001
-
Rezounenko, A, “A sufficient condition for the existence of approximate inertial manifolds containing the global attractor”, Comptes Rendus Mathematique, 334:11 (2002), 1015
-
Langa, JA, “Fractal dimension of a random invariant set”, Journal de Mathematiques Pures et Appliquees, 85:2 (2006), 269
-
A. V. Romanov, “Effective finite parametrization in phase spaces of parabolic
equations”, Izv. Math., 70:5 (2006), 1015–1029
-
de Moura E.P., Robinson J.C., Sanchez-Gabites J.J., “Embedding of Global Attractors and their Dynamics”, Proc Amer Math Soc, 139:10 (2011), 3497–3512
-
A. Eden, S. V. Zelik, V. K. Kalantarov, “Counterexamples to regularity of Mañé projections in the theory of attractors”, Russian Math. Surveys, 68:2 (2013), 199–226
-
J.C.. Robinson, “Attractors and Finite-Dimensional Behaviour in the 2D Navier–Stokes Equations”, ISRN Mathematical Analysis, 2013 (2013), 1
-
Zelik S., “Inertial Manifolds and Finite-Dimensional Reduction For Dissipative PDEs”, Proc. R. Soc. Edinb. Sect. A-Math., 144:6 (2014), 1245–1327
-
de Moura E.P., Robinson J.C., “Log-Lipschitz Continuity of the Vector Field on the Attractor of Certain Parabolic Equations”, Dyn. Partial Differ. Equ., 11:3 (2014), 211–228
-
Anna Kostianko, Sergey Zelik, “Inertial manifolds for the 3D Cahn-Hilliard equations with periodic boundary conditions”, CPAA, 14:5 (2015), 2069
-
Robinson J.C., Sanchez-Gabites J.J., “On finite-dimensional global attractors of homeomorphisms”, Bull. London Math. Soc., 48:3 (2016), 483–498
-
Sanchez-Gabites J.J., “Arcs, balls and spheres that cannot be attractors in $\mathbb {R}^3$”, Trans. Am. Math. Soc., 368:5 (2016), 3591–3627
-
Kostianko A., Zelik S., “Inertial Manifolds For 1D Reaction-Diffusion-Advection Systems. Part i: Dirichlet and Neumann Boundary Conditions”, Commun. Pure Appl. Anal, 16:6 (2017), 2357–2376
-
Kostianko A., Zelik S., “Nertial Manifolds For 1D Reaction-Diffusion-Advection Systems. Part II: Periodic Boundary Conditions”, Commun. Pure Appl. Anal, 17:1 (2018), 285–317
|
Number of views: |
This page: | 327 | Full text: | 107 | References: | 41 | First page: | 1 |
|