Matematicheskii Sbornik
General information
Latest issue
Forthcoming papers
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Mat. Sb.:

Personal entry:
Save password
Forgotten password?

Mat. Sb., 2009, Volume 200, Number 6, Pages 67–108 (Mi msb5096)  

This article is cited in 9 scientific papers (total in 9 papers)

Some problems in the theory of approximation of functions on compact homogeneous manifolds

S. S. Platonov

Petrozavodsk State University, Faculty of Mathematics

Abstract: Problems in the theory of approximation of functions on an arbitrary compact rank-one symmetric space $M$ in the metric of $L_p$, $1\le p\le\infty$, are investigated. The approximating functions are generalized spherical polynomials, that is, linear combinations of eigenfunctions of the Beltrami-Laplace operator on $M$. Analogues of the direct Jackson theorems are proved for the modulus of smoothness (of arbitrary order) constructed by using the operator of spherical averaging. It is established that the modulus of smoothness and the $K$-functional constructed from the Sobolev-type space corresponding to the Beltrami-Laplace differential operator are equivalent.
Bibliography: 35 titles.

Keywords: approximation of functions, compact symmetric space, Jacobi polynomials, moduli of smoothness, Jackson's theorems.


Full text: PDF file (760 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2009, 200:6, 845–885

Bibliographic databases:

UDC: 517.518.8
MSC: Primary 41A17; Secondary 22E30, 43A85
Received: 28.03.2008 and 09.12.2008

Citation: S. S. Platonov, “Some problems in the theory of approximation of functions on compact homogeneous manifolds”, Mat. Sb., 200:6 (2009), 67–108; Sb. Math., 200:6 (2009), 845–885

Citation in format AMSBIB
\by S.~S.~Platonov
\paper Some problems in the theory of approximation of functions on compact homogeneous manifolds
\jour Mat. Sb.
\yr 2009
\vol 200
\issue 6
\pages 67--108
\jour Sb. Math.
\yr 2009
\vol 200
\issue 6
\pages 845--885

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. El Ouadih S., Daher R., “On Spherical Analogues of the Classical Theorems of Titchmarsh”, Integral Transform. Spec. Funct.  crossref  mathscinet  isi
    2. El Ouadih S., Daher R., Tyr O., Saadi F., “Equivalence of K-Functionals and Moduli of Smoothness Generated By the Beltrami-Laplace Operator on the Spaces S-(P,S-Q)(SIGMA(M-1))”, Rend. Circ. Mat. Palermo  crossref  isi
    3. S. S. Platonov, “Fourier–Jacobi harmonic analysis and approximation of functions”, Izv. Math., 78:1 (2014), 106–153  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. Victor S. Barbosa, Valdir A. Menegatto, “Generalized Convolution Roots of Positive Definite Kernels on Complex Spheres”, SIGMA, 11 (2015), 014, 13 pp.  mathnet  crossref  mathscinet
    5. Jordao T., Menegatto V.A., “Jackson kernels: a tool for analysing the decay of eigenvalue sequences of integral operators on the sphere”, Math. Inequal. Appl., 18:4 (2015), 1483–1500  crossref  mathscinet  zmath  isi  scopus
    6. Barbosa V.S., Menegatto V.A., “Strictly positive definite kernels on compact two-point homogeneous spaces”, Math. Inequal. Appl., 19:2 (2016), 743–756  crossref  mathscinet  zmath  isi  scopus
    7. Bonfim R.N., Menegatto V.A., “Strict positive definiteness of multivariate covariance functions on compact two-point homogeneous spaces”, J. Multivar. Anal., 152 (2016), 237–248  crossref  mathscinet  zmath  isi  scopus
    8. Castro M.H., Jordao T., Peron A.P., “Super-Exponential Decay Rates For Eigenvalues and Singular Values of Integral Operators on the Sphere”, J. Comput. Appl. Math., 364 (2020), UNSP 112334  crossref  mathscinet  isi
    9. Carrijo A.O., Jordao T., “Approximation Tools and Decay Rates For Eigenvalues of Integral Operators on a General Setting”, Positivity, 24:4 (2020), 761–777  crossref  mathscinet  isi
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:531
    Full text:200
    First page:11

    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021