RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2000, Volume 191, Number 10, Pages 119–136 (Mi msb519)  

This article is cited in 3 scientific papers (total in 3 papers)

Analyticity of global attractors and determining nodes for a class of damped non-linear wave equations

I. D. Chueshov

V. N. Karazin Kharkiv National University

Abstract: The Gevrey regularity of global attractors of dynamical systems generated by a certain class of coupled dissipative systems of damped non-linear wave equations with periodic boundary conditions is established. This result means that the elements of the attractor are real-analytic functions in the spatial variables. As an application the existence of two determining nodes for the corresponding problem in one spatial dimension is proved.

DOI: https://doi.org/10.4213/sm519

Full text: PDF file (311 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2000, 191:10, 1541–1559

Bibliographic databases:

UDC: 517.94
MSC: 35B40, 35B41, 35L70
Received: 11.06.1999

Citation: I. D. Chueshov, “Analyticity of global attractors and determining nodes for a class of damped non-linear wave equations”, Mat. Sb., 191:10 (2000), 119–136; Sb. Math., 191:10 (2000), 1541–1559

Citation in format AMSBIB
\Bibitem{Chu00}
\by I.~D.~Chueshov
\paper Analyticity of global attractors and determining nodes for a~class of damped non-linear wave equations
\jour Mat. Sb.
\yr 2000
\vol 191
\issue 10
\pages 119--136
\mathnet{http://mi.mathnet.ru/msb519}
\crossref{https://doi.org/10.4213/sm519}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1817123}
\zmath{https://zbmath.org/?q=an:0969.35027}
\transl
\jour Sb. Math.
\yr 2000
\vol 191
\issue 10
\pages 1541--1559
\crossref{https://doi.org/10.1070/sm2000v191n10ABEH000519}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000166687700016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034354917}


Linking options:
  • http://mi.mathnet.ru/eng/msb519
  • https://doi.org/10.4213/sm519
  • http://mi.mathnet.ru/eng/msb/v191/i10/p119

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Shcherbina A.S., “Gevrey regularity of the global attractor for the dissipative Zakharov system”, Dynamical Systems-An International Journal, 18:3 (2003), 201–225  crossref  mathscinet  zmath  isi  scopus  scopus
    2. Zelik S., “Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities”, Discrete Contin. Dyn. Syst., 11:2-3 (2004), 351–392  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    3. Zhu C.S., “Gevrey regularity of the attractor for the Sobolev-Galpern equation”, Lobachevskii J. Math., 29:4 (2008), 264–270  crossref  mathscinet  zmath  scopus  scopus  scopus
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:239
    Full text:143
    References:35
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021