RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2000, Volume 191, Number 12, Pages 27–50 (Mi msb527)  

This article is cited in 3 scientific papers (total in 3 papers)

Almost periodic measure-valued functions

L. I. Danilov

Physical-Technical Institute of the Ural Branch of the Russian Academy of Sciences

Abstract: Weakly almost periodic measure-valued functions $\mathbb R\ni t\to\mu[ \cdot ;t]$ taking values in the space $\mathscr M(U)$ of Borel measures of variable sign in a complete separable metric space $U$ are considered. A norm ${\|\cdot\|}_w$ introduced in the space $\mathscr M(U)$ defines a metric on the set of probability Borel measures that is equivalent to the Levy–Prokhorov metric. A connection between the almost periodicity of a measure-valued function $t\to\mu[ \cdot ;t]\in (\mathscr M(U),{\|\cdot\|}_w)$ and its weak almost periodicity (both in the sense of Bohr and in the sense of Stepanov) is established.

DOI: https://doi.org/10.4213/sm527

Full text: PDF file (399 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2000, 191:12, 1773–1796

Bibliographic databases:

UDC: 517.9
MSC: Primary 42A75; Secondary 28A33
Received: 10.01.1999 and 13.04.2000

Citation: L. I. Danilov, “Almost periodic measure-valued functions”, Mat. Sb., 191:12 (2000), 27–50; Sb. Math., 191:12 (2000), 1773–1796

Citation in format AMSBIB
\Bibitem{Dan00}
\by L.~I.~Danilov
\paper Almost periodic measure-valued functions
\jour Mat. Sb.
\yr 2000
\vol 191
\issue 12
\pages 27--50
\mathnet{http://mi.mathnet.ru/msb527}
\crossref{https://doi.org/10.4213/sm527}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1829412}
\zmath{https://zbmath.org/?q=an:1038.42010}
\elib{http://elibrary.ru/item.asp?id=13340248}
\transl
\jour Sb. Math.
\yr 2000
\vol 191
\issue 12
\pages 1773--1796
\crossref{https://doi.org/10.1070/sm2000v191n12ABEH000527}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000168023700008}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034340574}


Linking options:
  • http://mi.mathnet.ru/eng/msb527
  • https://doi.org/10.4213/sm527
  • http://mi.mathnet.ru/eng/msb/v191/i12/p27

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. L. I. Danilov, “O pochti periodicheskikh po Veilyu meroznachnykh funktsiyakh”, Izv. IMI UdGU, 2005, no. 1(31), 79–98  mathnet
    2. L. I. Danilov, “O ravnomernoi approksimatsii pochti periodicheskikh po Veilyu i pochti periodicheskikh po Bezikovichu funktsii”, Izv. IMI UdGU, 2006, no. 1(35), 33–48  mathnet
    3. L. I. Danilov, “O pochti periodicheskikh secheniyakh mnogoznachnykh otobrazhenii”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2008, no. 2, 34–41  mathnet  elib
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:182
    Full text:66
    References:36
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019