RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1953, Volume 33(75), Number 1, Pages 215–218 (Mi msb5343)  

Necessary and sufficient conditions that the roots of a polynomial not have positive real parts and that the multiplicity of the zero and imaginary roots not exceed a given number

V. S. Novoselov


Full text: PDF file (349 kB)

Bibliographic databases:
Received: 21.10.1952

Citation: V. S. Novoselov, “Necessary and sufficient conditions that the roots of a polynomial not have positive real parts and that the multiplicity of the zero and imaginary roots not exceed a given number”, Mat. Sb. (N.S.), 33(75):1 (1953), 215–218

Citation in format AMSBIB
\Bibitem{Nov53}
\by V.~S.~Novoselov
\paper Necessary and sufficient conditions that the roots of a polynomial not have positive real parts and that the multiplicity of the zero and imaginary roots not exceed a given number
\jour Mat. Sb. (N.S.)
\yr 1953
\vol 33(75)
\issue 1
\pages 215--218
\mathnet{http://mi.mathnet.ru/msb5343}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=57367}
\zmath{https://zbmath.org/?q=an:0051.01004}


Linking options:
  • http://mi.mathnet.ru/eng/msb5343
  • http://mi.mathnet.ru/eng/msb/v75/i1/p215

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математический сборник (новая серия) - 1947–1963
    Number of views:
    This page:279
    Full text:107

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020