|
This article is cited in 11 scientific papers (total in 11 papers)
Homogenization of a mixed problem with Signorini condition for an elliptic operator in a perforated domain
S. E. Pastukhova Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University)
Abstract:
For the case of a 2-connected $\varepsilon$-periodic $(\varepsilon\in(0,1))$ perforated space with a bounded domain $\Omega_\varepsilon$ selected in it the homogenization property as
$\varepsilon\to0$ is proved for the boundary-value problem for a second-order elliptic operator in the domain $\Omega_\varepsilon$ with one-sided condition of Signorini type on the boundaries of “cavities” and with Dirichlet condition on the outer boundary.
DOI:
https://doi.org/10.4213/sm544
Full text:
PDF file (281 kB)
References:
PDF file
HTML file
English version:
Sbornik: Mathematics, 2001, 192:2, 245–260
Bibliographic databases:
UDC:
517.953
MSC: 35B27, 35J15 Received: 24.04.2000
Citation:
S. E. Pastukhova, “Homogenization of a mixed problem with Signorini condition for an elliptic operator in a perforated domain”, Mat. Sb., 192:2 (2001), 87–102; Sb. Math., 192:2 (2001), 245–260
Citation in format AMSBIB
\Bibitem{Pas01}
\by S.~E.~Pastukhova
\paper Homogenization of a~mixed problem with Signorini condition for an~elliptic operator in a~perforated domain
\jour Mat. Sb.
\yr 2001
\vol 192
\issue 2
\pages 87--102
\mathnet{http://mi.mathnet.ru/msb544}
\crossref{https://doi.org/10.4213/sm544}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1835987}
\zmath{https://zbmath.org/?q=an:1097.35024}
\transl
\jour Sb. Math.
\yr 2001
\vol 192
\issue 2
\pages 245--260
\crossref{https://doi.org/10.1070/sm2001v192n02ABEH000544}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000169373500012}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035532934}
Linking options:
http://mi.mathnet.ru/eng/msb544https://doi.org/10.4213/sm544 http://mi.mathnet.ru/eng/msb/v192/i2/p87
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Pastukhova S.E., “The oscillating boundary phenomenon in the homogenization of a climatization problem”, Differ. Equ., 37:9 (2001), 1276—-1283
-
I. I. Argatov, “Osrednenie smeshannoi zadachi dlya operatora Laplasa s usloviyami Sinorini na vnutrennei melkozernistoi granitse”, Sib. zhurn. industr. matem., 7:4 (2004), 3–15
-
Sandrakov G.V., “Homogenization of variational inequalities with the Signorini condition in perforated domains”, Dokl. Math., 70:3 (2004), 941–944
-
G. V. Sandrakov, “Homogenization of variational inequalities for non-linear diffusion problems in perforated domains”, Izv. Math., 69:5 (2005), 1035–1059
-
Kazmerchuk Yu.A., Mel'nyk T.A., “Homogenization of the signorini boundary-value problem in a thick plane junction”, Nonlinear Oscill., 12:1 (2009), 45–59
-
T. A. Mel'nyk, Iu. A. Nakvasiuk, W. L. Wendland, “Homogenization of the Signorini boundary-value problem in a thick junction and boundary integral equations for the homogenized problem”, Math. Meth. Appl. Sci, 2010, n/a
-
Sango M., “Homogenization of the Neumann Problem for a Quasilinear Elliptic Equation in a Perforated Domain”, Networks and Heterogeneous Media, 5:2 (2010), 361–384
-
T. A. Mel’nyk, Iu. A. Nakvasiuk, “Homogenization of a parabolic signorini boundary value problem in a thick plane junction”, J Math Sci, 2012
-
Amirat Y., Shelukhin V.V., “Homogenization of composite electrets”, Eur. J. Appl. Math., 28:2 (2017), 261–283
-
Gomez D., Lobo M., Perez E., Podolskii V A., Shaposhnikova T.A., “Unilateral Problems For the P-Laplace Operator in Perforated Media Involving Large Parameters”, ESAIM-Control OPtim. Calc. Var., 24:3 (2018), 921–964
-
Ptashnyk M., “Homogenization of Some Degenerate Pseudoparabolic Variational Inequalities”, J. Math. Anal. Appl., 469:1 (2019), 44–75
|
Number of views: |
This page: | 287 | Full text: | 127 | References: | 29 | First page: | 1 |
|