RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb. (N.S.), 1950, Volume 27(69), Number 3, Pages 379–426 (Mi msb5926)  

This article is cited in 16 scientific papers (total in 16 papers)

Triorthogonal systems in spaces of constant curvature in which the equation $\Delta_2u+\lambda u=0$ allows a complete separation of variables

M. N. Olevskii


Full text: PDF file (4176 kB)

Bibliographic databases:

Received: 08.07.1948

Citation: M. N. Olevskii, “Triorthogonal systems in spaces of constant curvature in which the equation $\Delta_2u+\lambda u=0$ allows a complete separation of variables”, Mat. Sb. (N.S.), 27(69):3 (1950), 379–426

Citation in format AMSBIB
\Bibitem{Ole50}
\by M.~N.~Olevskii
\paper Triorthogonal systems in spaces of constant curvature in which the equation $\Delta_2u+\lambda u=0$ allows a complete separation of variables
\jour Mat. Sb. (N.S.)
\yr 1950
\vol 27(69)
\issue 3
\pages 379--426
\mathnet{http://mi.mathnet.ru/msb5926}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=38535}
\zmath{https://zbmath.org/?q=an:0041.49802}


Linking options:
  • http://mi.mathnet.ru/eng/msb5926
  • http://mi.mathnet.ru/eng/msb/v69/i3/p379

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. Lukach, Ya. A. Smorodinskii, “Separation of variables in a spheroconical coordinate system and the Schrödinger equation for a case of noncentral forces”, Theoret. and Math. Phys., 14:2 (1973), 125–131  mathnet  crossref
    2. I. Lukach, “A complete set of quantum-mechanical observables on a two-dimensional sphere”, Theoret. and Math. Phys., 14:3 (1973), 271–281  mathnet  crossref
    3. I. Lukach, “Complete sets of observables on the sphere in four-dimensional Euclidean space”, Theoret. and Math. Phys., 31:2 (1977), 457–461  mathnet  crossref  mathscinet
    4. Victor M. Red'kov, Andrei A. Bogush, Natalia G. Tokarevskaya, “On Parametrization of the Linear $\mathrm{GL}(4,C)$ and Unitary $\mathrm{SU}(4)$ Groups in Terms of Dirac Matrices”, SIGMA, 4 (2008), 021, 46 pp.  mathnet  crossref  mathscinet  zmath
    5. V. V. Kudryashov, Yu. A. Kurochkin, E. M. Ovsiyuk, V. M. Red'kov, “Classical Particle in Presence of Magnetic Field, Hyperbolic Lobachevsky and Spherical Riemann Models”, SIGMA, 6 (2010), 004, 34 pp.  mathnet  crossref  mathscinet
    6. Howard S. Cohl, “Fundamental Solution of Laplace's Equation in Hyperspherical Geometry”, SIGMA, 7 (2011), 108, 14 pp.  mathnet  crossref
    7. Ernie Kalnins, George S. Pogosyan, Alexander Yakhno, “Separation of Variables and Contractions on Two-Dimensional Hyperboloid”, SIGMA, 8 (2012), 105, 11 pp.  mathnet  crossref
    8. Kisel V.V., Ovsiyuk E.M., Veko O.V., Redkov V.M., “Kvantovaya mekhanika vektornoi chastitsy v magnitnom pole na chetyrekhmernoi sfere”, Nauchno-tekhnicheskie vedomosti spbgpu, 2012, no. 141, 128–137  elib
    9. Ovsiyuk E.M., Veko O.V., Kisel V.V., Redkov V.M., “Novye zadachi kvantovoi mekhaniki i uravnenie goina”, Nauchno-tekhnicheskie vedomosti spbgpu, 2012, no. 141, 137–145  elib
    10. Cohl H.S. Kalnins E.G., “Fourier and Gegenbauer Expansions for a Fundamental Solution of the Laplacian in the Hyperboloid Model of Hyperbolic Geometry”, J. Phys. A-Math. Theor., 45:14 (2012), 145206  crossref  isi
    11. Konrad Schöbel, “The Variety of Integrable Killing Tensors on the 3-Sphere”, SIGMA, 10 (2014), 080, 48 pp.  mathnet  crossref
    12. E. M. Ovsiyuk, “Elektromagnitnoe pole v formalizme Maiorany–Oppengeimera vo Vselennoi anti de Sittera”, PFMT, 2015, no. 3(24), 21–25  mathnet
    13. Davit R. Petrosyan, George S. Pogosyan, “Harmonic Oscillator on the $\mathrm{SO}(2,2)$ Hyperboloid”, SIGMA, 11 (2015), 096, 23 pp.  mathnet  crossref
    14. Konrad Schöbel, “Are Orthogonal Separable Coordinates Really Classified?”, SIGMA, 12 (2016), 041, 16 pp.  mathnet  crossref
    15. Krishan Rajaratnam, Raymond G. McLenaghan, Carlos Valero, “Orthogonal Separation of the Hamilton–Jacobi Equation on Spaces of Constant Curvature”, SIGMA, 12 (2016), 117, 30 pp.  mathnet  crossref
    16. Howard S. Cohl, Thinh H. Dang, T. M. Dunster, “Fundamental Solutions and Gegenbauer Expansions of Helmholtz Operators in Riemannian Spaces of Constant Curvature”, SIGMA, 14 (2018), 136, 45 pp.  mathnet  crossref
  • Математический сборник (новая серия) - 1947–1963
    Number of views:
    This page:335
    Full text:156

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019