RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2001, Volume 192, Number 12, Pages 25–60 (Mi msb615)  

This article is cited in 5 scientific papers (total in 5 papers)

Solutions of exterior boundary-value problems for the elasticity system in weighted spaces

H. Matevossian

M. V. Lomonosov Moscow State University

Abstract: The properties of generalized solutions of the exterior Dirichlet and Neumann boundary-value problems are studied for the stationary linear system of elasticity theory in unbounded domains under the assumption that generalized solutions of these problems have finite energy integrals with weight $|x|^a$. Depending on the value of the parameter $a$ uniqueness results are established and explicit formulae for the dimension of the space of solutions of the exterior boundary-value problems are obtained.

DOI: https://doi.org/10.4213/sm615

Full text: PDF file (400 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2001, 192:12, 1763–1798

Bibliographic databases:

UDC: 517.95
MSC: Primary 74B05, 35G15; Secondary 74H20, 74H25
Received: 17.01.2000 and 30.01.2001

Citation: H. Matevossian, “Solutions of exterior boundary-value problems for the elasticity system in weighted spaces”, Mat. Sb., 192:12 (2001), 25–60; Sb. Math., 192:12 (2001), 1763–1798

Citation in format AMSBIB
\Bibitem{Mat01}
\by H.~Matevossian
\paper Solutions of exterior boundary-value problems for the~elasticity system in weighted spaces
\jour Mat. Sb.
\yr 2001
\vol 192
\issue 12
\pages 25--60
\mathnet{http://mi.mathnet.ru/msb615}
\crossref{https://doi.org/10.4213/sm615}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1885912}
\zmath{https://zbmath.org/?q=an:1029.35217}
\transl
\jour Sb. Math.
\yr 2001
\vol 192
\issue 12
\pages 1763--1798
\crossref{https://doi.org/10.1070/SM2001v192n12ABEH000615}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000174857300009}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035528650}


Linking options:
  • http://mi.mathnet.ru/eng/msb615
  • https://doi.org/10.4213/sm615
  • http://mi.mathnet.ru/eng/msb/v192/i12/p25

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. O. A. Matevosyan, “Solutions of the Robin problem for the system of elastic theory in external domains”, J. Math. Sci. (N. Y.), 197:3 (2014), 367–394  mathnet  crossref  elib
    2. H. A. Matevossian, “On Solutions of the Neumann Problem for the Biharmonic Equation in Unbounded Domains”, Math. Notes, 98:6 (2015), 990–994  mathnet  crossref  crossref  mathscinet  isi  elib
    3. Matevosyan O.A., “On solutions of a boundary value problem for the biharmonic equation”, Differ. Equ., 52:10 (2016), 1379–1383  crossref  mathscinet  zmath  isi  scopus
    4. H. A. Matevossian, “Mixed Dirichlet–Steklov problem for the biharmonic equation in weighted spaces”, J. Math. Sci. (N. Y.), 234:4 (2018), 440–454  mathnet  crossref
    5. Matevossian H.A., “On the Polyharmonic Neumann Problem in Weighted Spaces”, Complex Var. Elliptic Equ., 64:1 (2019), 1–7  crossref  mathscinet  zmath  isi  scopus
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:290
    Full text:82
    References:30
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019