RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2002, Volume 193, Number 2, Pages 153–160 (Mi msb631)  

This article is cited in 11 scientific papers (total in 11 papers)

On periodic groups with Abelian centralizers of involutions

N. M. Suchkov

Krasnoyarsk State University

Abstract: A complete periodic analogue is obtained of a well-known theorem of Suzuki on the structure of a finite group in which the centralizer of every involution is Abelian.

DOI: https://doi.org/10.4213/sm631

Full text: PDF file (218 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2002, 193:2, 303–310

Bibliographic databases:

UDC: 512.544
MSC: Primary 20F50; Secondary 20E07, 20E34
Received: 24.08.2000

Citation: N. M. Suchkov, “On periodic groups with Abelian centralizers of involutions”, Mat. Sb., 193:2 (2002), 153–160; Sb. Math., 193:2 (2002), 303–310

Citation in format AMSBIB
\Bibitem{Suc02}
\by N.~M.~Suchkov
\paper On periodic groups with Abelian centralizers of involutions
\jour Mat. Sb.
\yr 2002
\vol 193
\issue 2
\pages 153--160
\mathnet{http://mi.mathnet.ru/msb631}
\crossref{https://doi.org/10.4213/sm631}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1912173}
\zmath{https://zbmath.org/?q=an:1037.20038}
\transl
\jour Sb. Math.
\yr 2002
\vol 193
\issue 2
\pages 303--310
\crossref{https://doi.org/10.1070/SM2002v193n02ABEH000631}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000175532600013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036012346}


Linking options:
  • http://mi.mathnet.ru/eng/msb631
  • https://doi.org/10.4213/sm631
  • http://mi.mathnet.ru/eng/msb/v193/i2/p153

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. I. Senashov, A. I. Sozutov, V. P. Shunkov, “Investigation of groups with finiteness conditions in Krasnoyarsk”, Russian Math. Surveys, 60:5 (2005), 805–848  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. Suchkov N.M., “On classes of infinite groups with involutions”, Acta Appl. Math., 85:1-3 (2005), 285–289  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    3. S. A. Tarasov, “Ob odnom klasse grupp s silno vlozhennoi podgruppoi”, Sib. elektron. matem. izv., 3 (2006), 346–351  mathnet  mathscinet  zmath
    4. A. I. Sozutov, A. S. Kryukovskii, “Groups with elementary Abelian centralizers of involutions”, Algebra and Logic, 46:1 (2007), 46–49  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    5. A. I. Sozutov, “On groups with almost perfect involution”, Proc. Steklov Inst. Math. (Suppl.), 257, suppl. 1 (2007), S181–S188  mathnet  crossref  mathscinet  elib
    6. V. I. Senashov, “On Shunkov Groups with a strongly embedded subgroup”, Proc. Steklov Inst. Math. (Suppl.), 267, suppl. 1 (2009), S210–S217  mathnet  crossref  isi  elib
    7. V. I. Senashov, “O gruppakh Shunkova s silno vlozhennoi pochti sloino konechnoi podgruppoi”, Tr. IMM UrO RAN, 16, no. 3, 2010, 234–239  mathnet  elib
    8. K. A. Filippov, “On periodic groups saturated by finite simple groups”, Siberian Math. J., 53:2 (2012), 345–351  mathnet  crossref  mathscinet  isi
    9. A. A. Duzh, A. A. Shlepkin, “O gruppakh Shunkova, nasyschennykh pryamymi proizvedeniyami grupp”, Vladikavk. matem. zhurn., 14:2 (2012), 35–38  mathnet
    10. Senashov V.I., “On Groups with a Strongly Imbedded Subgroup Having an Almost Layer-Finite Periodic Part”, Ukr. Math. J., 64:3 (2012), 433–440  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    11. A. I. Sozutov, “Groups with the quasicyclic centralizer of a finite involution”, Siberian Math. J., 57:5 (2016), 881–883  mathnet  crossref  crossref  isi  elib  elib
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:254
    Full text:109
    References:35
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020