RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2002, Volume 193, Number 3, Pages 51–78 (Mi msb636)  

This article is cited in 11 scientific papers (total in 11 papers)

A mixing special flow over a circle rotation with almost Lipschitz function

A. V. Kochergin

M. V. Lomonosov Moscow State University

Abstract: It is shown that for each continuity condition that is regular in a certain sense and is weaker that the Lipschitz condition there exists a mixing special flow constructed for some rotation of a circle and ceiling function satisfying this continuity condition.

DOI: https://doi.org/10.4213/sm636

Full text: PDF file (357 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2002, 193:3, 359–385

Bibliographic databases:

UDC: 517.987.5+517.938
MSC: 37A15, 37A25
Received: 01.11.2001

Citation: A. V. Kochergin, “A mixing special flow over a circle rotation with almost Lipschitz function”, Mat. Sb., 193:3 (2002), 51–78; Sb. Math., 193:3 (2002), 359–385

Citation in format AMSBIB
\Bibitem{Koc02}
\by A.~V.~Kochergin
\paper A mixing special flow over a~circle rotation with almost
Lipschitz function
\jour Mat. Sb.
\yr 2002
\vol 193
\issue 3
\pages 51--78
\mathnet{http://mi.mathnet.ru/msb636}
\crossref{https://doi.org/10.4213/sm636}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1913598}
\zmath{https://zbmath.org/?q=an:1029.37002}
\elib{http://elibrary.ru/item.asp?id=13390308}
\transl
\jour Sb. Math.
\yr 2002
\vol 193
\issue 3
\pages 359--385
\crossref{https://doi.org/10.1070/SM2002v193n03ABEH000636}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000177130300005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036054496}


Linking options:
  • http://mi.mathnet.ru/eng/msb636
  • https://doi.org/10.4213/sm636
  • http://mi.mathnet.ru/eng/msb/v193/i3/p51

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Kochergin, “Non-degenerate fixed points and mixing in flows on a 2-torus”, Sb. Math., 194:8 (2003), 1195–1224  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. Fra̧czek K., Lemańczyk M., “A class of special flows over irrational rotations which is disjoint from mixing flows”, Ergodic Theory Dynam. Systems, 24:4 (2004), 1083–1095  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    3. A. V. Kochergin, “Non-degenerate fixed points and mixing in flows on a 2-torus. II”, Sb. Math., 195:3 (2004), 317–346  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. A. V. Kochergin, “Hölder Time Change and Mixing Rate in a Flow on the Two-Dimensional Torus”, Proc. Steklov Inst. Math., 244 (2004), 201–232  mathnet  mathscinet  zmath
    5. Ulcigrai C, “Mixing of asymmetric logarithmic suspension flows over interval exchange transformations”, Ergodic Theory and Dynamical Systems, 27:Part 3 (2007), 991–1035  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    6. Ulcigrai C., “Weak mixing for logarithmic flows over interval exchange transformations”, J. Mod. Dyn., 3:1 (2009), 35–49  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    7. Fraczek K., Lemanczyk M., “Ratner's Property and Mild Mixing for Special Flows Over Two-Dimensional Rotations”, J Mod Dyn, 4:4 (2010), 609–635  mathscinet  zmath  isi
    8. Krzysztof Frączek, Mariusz Lemańczyk, “A class of mixing special flows over two–dimensional rotations”, DCDS-A, 35:10 (2015), 4823  crossref  mathscinet  zmath  scopus  scopus  scopus
    9. A. V. Kochergin, “Besicovitch Cylindrical Transformation with a Hölder Function”, Math. Notes, 99:3 (2016), 382–389  mathnet  crossref  crossref  mathscinet  isi  elib
    10. A. V. Kochergin, “New examples of Besicovitch transitive cylindrical cascades”, Sb. Math., 209:9 (2018), 1257–1272  mathnet  crossref  crossref  adsnasa  isi  elib
    11. Chaika J. Wright A., “A Smooth Mixing Flow on a Surface With Nondegenerate Fixed Points”, J. Am. Math. Soc., 32:1 (2019), 81–117  crossref  mathscinet  zmath  isi
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:236
    Full text:113
    References:32
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019