  RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  General information Latest issue Forthcoming papers Archive Impact factor Subscription Guidelines for authors License agreement Submit a manuscript Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Mat. Sb.: Year: Volume: Issue: Page: Find

 Personal entry: Login: Password: Save password Enter Forgotten password? Register

 Mat. Sb., 2010, Volume 201, Number 1, Pages 25–58 (Mi msb6395)  Iterated cyclic exponentials and power functions with extra-periodic first coefficients

A. P. Bulanov

Obninsk State Technical University for Nuclear Power Engineering

Abstract: If $f$ is the iterated $m$-cyclic exponential
$$f(z)=e^{\lambda\alpha_1ze^{\alpha_2ze^…}}= \langle e^z;\lambda\alpha_1,\alpha_2,…,\alpha_m,\alpha_1,…\rangle,$$
where the first coefficient, $\lambda\alpha_1$, in the sequence of coefficients is extra-periodic, then in its power series expansion at $z=0$, $\sum_{n=0}^\infty\frac1{n!}H^{(n)}(f) z^n$, the form $H^{(n)}(f)$ can be written as
\begin{align*} H^{(n)}(f) &=\lambda\alpha_1\sum_{k_1+…+k_m=n}\frac{n!}{k_1!\dotsb k_m!} (k_1\alpha_2)^{k_2}(k_2\alpha_3)^{k_3}
This formula is generalized to any number of extra-periodic coefficients at the start of the sequence. It is also shown that in some cases iterated cyclic exponentials whose first coefficients are not elements of the $m$-cyclic sequence $(\alpha_1,\alpha_2,…,\alpha_m,\alpha_1,…)$ can furnish a solution of a first-order system of differential equations with rational right-hand side.
Bibliography: 32 titles.

Keywords: iterated exponential, cyclic exponential, iterated power function, cyclic power function, coefficient of an exponential, sequence.

DOI: https://doi.org/10.4213/sm6395  Full text: PDF file (709 kB) References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2010, 201:1, 23–55 Bibliographic databases:       UDC: 517.521.2+517.537
MSC: 40A30, 30B99
Received: 23.07.2008 and 15.07.2009

Citation: A. P. Bulanov, “Iterated cyclic exponentials and power functions with extra-periodic first coefficients”, Mat. Sb., 201:1 (2010), 25–58; Sb. Math., 201:1 (2010), 23–55 Citation in format AMSBIB
\Bibitem{Bul10}
\by A.~P.~Bulanov
\paper Iterated cyclic exponentials and power functions with extra-periodic first coefficients
\jour Mat. Sb.
\yr 2010
\vol 201
\issue 1
\pages 25--58
\mathnet{http://mi.mathnet.ru/msb6395}
\crossref{https://doi.org/10.4213/sm6395}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2641087}
\zmath{https://zbmath.org/?q=an:1194.40001}
\elib{http://elibrary.ru/item.asp?id=19066159}
\transl
\jour Sb. Math.
\yr 2010
\vol 201
\issue 1
\pages 23--55
\crossref{https://doi.org/10.1070/SM2010v201n01ABEH004064}
\elib{http://elibrary.ru/item.asp?id=15313419}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77950342841}

• http://mi.mathnet.ru/eng/msb6395
• https://doi.org/10.4213/sm6395
• http://mi.mathnet.ru/eng/msb/v201/i1/p25

 SHARE:      Citing articles on Google Scholar: Russian citations, English citations
Related articles on Google Scholar: Russian articles, English articles
•  Number of views: This page: 700 Full text: 111 References: 62 First page: 22 Contact us: math-net2019_10 [at] mi-ras ru Terms of Use Registration Logotypes © Steklov Mathematical Institute RAS, 2019