RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2002, Volume 193, Number 5, Pages 53–76 (Mi msb651)  

This article is cited in 5 scientific papers (total in 5 papers)

Concircular geometry of nearly Kähler manifolds

V. F. Kirichenko, L. I. Vlasova

Moscow State Pedagogical University

Abstract: Riemannian manifolds admitting concircular transformations of the metric are considered. Concircular invariants of almost Hermitian manifolds are investigated. The geometry of almost Hermitian manifolds obtained by concircular transformations of the metric of nearly Kähler manifolds is studied in detail. New examples of almost Hermitian manifolds of constant curvature in the class $W_1\oplus W_4$ with integrable as well as non-integrable structure are presented.

DOI: https://doi.org/10.4213/sm651

Full text: PDF file (355 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2002, 193:5, 685–707

Bibliographic databases:

UDC: 514.76
MSC: 53C15, 53C55
Received: 17.10.2000 and 16.01.2002

Citation: V. F. Kirichenko, L. I. Vlasova, “Concircular geometry of nearly Kähler manifolds”, Mat. Sb., 193:5 (2002), 53–76; Sb. Math., 193:5 (2002), 685–707

Citation in format AMSBIB
\Bibitem{KirVla02}
\by V.~F.~Kirichenko, L.~I.~Vlasova
\paper Concircular geometry of nearly K\"ahler manifolds
\jour Mat. Sb.
\yr 2002
\vol 193
\issue 5
\pages 53--76
\mathnet{http://mi.mathnet.ru/msb651}
\crossref{https://doi.org/10.4213/sm651}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1918247}
\zmath{https://zbmath.org/?q=an:1085.53036}
\elib{https://elibrary.ru/item.asp?id=13400610}
\transl
\jour Sb. Math.
\yr 2002
\vol 193
\issue 5
\pages 685--707
\crossref{https://doi.org/10.1070/SM2002v193n05ABEH000651}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000178245000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036622426}


Linking options:
  • http://mi.mathnet.ru/eng/msb651
  • https://doi.org/10.4213/sm651
  • http://mi.mathnet.ru/eng/msb/v193/i5/p53

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. A. Pol'kina, “Curvature identities for almost contact metric manifolds”, Russian Math. (Iz. VUZ), 51:7 (2007), 54–57  mathnet  crossref  mathscinet  zmath  elib
    2. V. F. Kirichenko, E. A. Pol'kina, “A Criterion for the Concircular Mobility of Quasi-Sasakian Manifolds”, Math. Notes, 86:3 (2009), 349–356  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. Karina Olszak, Zbigniew Olszak, “On pseudo-Riemannian manifolds with recurrent concircular curvature tensor”, Acta Math Hung, 2012  crossref  mathscinet  isi  scopus  scopus  scopus
    4. V. F. Kirichenko, E. A. Pol'kina, “Contact Lie Form and Concircular Geometry of Locally Conformally Quasi-Sasakian Manifolds”, Math. Notes, 99:1 (2016), 52–62  mathnet  crossref  crossref  mathscinet  isi  elib
    5. M. B. Banaru, “O shestimernoi sfere s priblizhenno kelerovoi strukturoi”, Geometriya, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 146, VINITI RAN, M., 2018, 3–16  mathnet  mathscinet
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:374
    Full text:140
    References:51
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021