RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2002, Volume 193, Number 6, Pages 105–122 (Mi msb662)  

This article is cited in 3 scientific papers (total in 3 papers)

Infinite-dimensional version of Morse theory for Lipschitz functionals

V. S. Klimov

P. G. Demidov Yaroslavl State University

Abstract: The type numbers of critical points of Lipschitz functionals defined on finite-defect submanifolds of a separable reflexive space are studied. Variants of the Morse inequalities are established. It is shown that the topological index of an isolated critical point is equal to the alternated sum of its type numbers.

DOI: https://doi.org/10.4213/sm662

Full text: PDF file (328 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2002, 193:6, 889–906

Bibliographic databases:

UDC: 517.946
MSC: Primary 58E05; Secondary 57R45, 58B05, 58K45, 58K65
Received: 20.04.2001

Citation: V. S. Klimov, “Infinite-dimensional version of Morse theory for Lipschitz functionals”, Mat. Sb., 193:6 (2002), 105–122; Sb. Math., 193:6 (2002), 889–906

Citation in format AMSBIB
\Bibitem{Kli02}
\by V.~S.~Klimov
\paper Infinite-dimensional version of Morse theory for Lipschitz functionals
\jour Mat. Sb.
\yr 2002
\vol 193
\issue 6
\pages 105--122
\mathnet{http://mi.mathnet.ru/msb662}
\crossref{https://doi.org/10.4213/sm662}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1957955}
\zmath{https://zbmath.org/?q=an:1063.58009}
\elib{http://elibrary.ru/item.asp?id=13406876}
\transl
\jour Sb. Math.
\yr 2002
\vol 193
\issue 6
\pages 889--906
\crossref{https://doi.org/10.1070/SM2002v193n06ABEH000662}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000178245000015}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036621971}


Linking options:
  • http://mi.mathnet.ru/eng/msb662
  • https://doi.org/10.4213/sm662
  • http://mi.mathnet.ru/eng/msb/v193/i6/p105

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. S. Klimov, “Monotone mappings and flows of viscous media”, Siberian Math. J., 45:6 (2004), 1063–1074  mathnet  crossref  mathscinet  zmath  isi
    2. V. S. Klimov, “On the convergence of the conditional gradient method”, Russian Math. (Iz. VUZ), 49:12 (2005), 25–32  mathnet  mathscinet  elib
    3. V. S. Klimov, “Topological characteristics of multi-valued maps and Lipschitzian functionals”, Izv. Math., 72:4 (2008), 717–739  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:238
    Full text:73
    References:31
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019