|
This article is cited in 49 scientific papers (total in 49 papers)
Uniqueness of solutions of elliptic equations and
uniqueness of invariant measures of diffusions
V. I. Bogacheva, M. Röcknerb, W. Stannatb a M. V. Lomonosov Moscow State University
b Bielefeld University
Abstract:
Let $M$ be a complete connected Riemannian manifold of dimension $d$ and let $L$ be a second order elliptic operator on $M$ that has a representation
$L=a^{ij}\partial_{x_i}\partial_{x_j}+b^i\partial_{x_i}$ in local coordinates, where
$a^{ij}\in H^{p,1}_{\mathrm{loc}}$, $b^i\in L^p_{loc}$ for some $p>d$, and the matrix
$(a^{ij})$ is non-singular. The aim of the paper is the study of the uniqueness of a solution of the elliptic equation $L^*\mu=0$ for probability measures $\mu$, which is understood in the weak sense: $\displaystyle\int L\varphi f d\mu=0$ for all $\varphi\in C_0^\infty(M)$.
In addition, the uniqueness of invariant probability measures for the corresponding
semigroups $(T_t^\mu)_{t\geqslant 0}$ generated by the operator $L$ is investigated. It is proved that if a probability measure $\mu$ on $M$ satisfies the equation $L^*\mu=0$ and $(L-I)(C^\infty_0(M))$ is dense in $L^1(M,\mu)$, then $\mu$ is a unique solution of this equation in the class of probability measures. Examples are presented (even with $a^{ij}=\delta^{ij}$ and smooth $b^i$) in which the equation $L^*\mu=0$
has more than one solution in the class of probability measures.
Finally, it is shown that if $p>d+2$, then the semigroup $(T_t)_{t\geqslant 0}$
generated by $L$ has at most one invariant probability measure.
DOI:
https://doi.org/10.4213/sm665
Full text:
PDF file (465 kB)
References:
PDF file
HTML file
English version:
Sbornik: Mathematics, 2002, 193:7, 945–976
Bibliographic databases:
UDC:
517.956+517.98+519.2
MSC: 58J05, 47F05 Received: 08.01.2002
Citation:
V. I. Bogachev, M. Röckner, W. Stannat, “Uniqueness of solutions of elliptic equations and
uniqueness of invariant measures of diffusions”, Mat. Sb., 193:7 (2002), 3–36; Sb. Math., 193:7 (2002), 945–976
Citation in format AMSBIB
\Bibitem{BogRocSta02}
\by V.~I.~Bogachev, M.~R\"ockner, W.~Stannat
\paper Uniqueness of solutions of elliptic equations and
uniqueness of invariant measures of diffusions
\jour Mat. Sb.
\yr 2002
\vol 193
\issue 7
\pages 3--36
\mathnet{http://mi.mathnet.ru/msb665}
\crossref{https://doi.org/10.4213/sm665}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1936848}
\zmath{https://zbmath.org/?q=an:1055.58009}
\elib{https://elibrary.ru/item.asp?id=14363201}
\transl
\jour Sb. Math.
\yr 2002
\vol 193
\issue 7
\pages 945--976
\crossref{https://doi.org/10.1070/SM2002v193n07ABEH000665}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000178959400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036662252}
Linking options:
http://mi.mathnet.ru/eng/msb665https://doi.org/10.4213/sm665 http://mi.mathnet.ru/eng/msb/v193/i7/p3
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. I. Bogachev, M. Röckner, “On $L^p$-uniqueness of symmetric diffusion operators on Riemannian manifolds”, Sb. Math., 194:7 (2003), 969–978
-
Bogachev V.I., Da Prato G., Röckner M., Sobol Z., “Global gradient bounds for dissipative diffusion operators”, C. R. Math. Acad. Sci. Paris, 339:4 (2004), 277–282
-
Bogachev V.I., Röckner M., Wang Feng-Yu, “Invariance implies Gibbsian: Some new results”, Comm. Math. Phys., 248:2 (2004), 335–355
-
Bogachev V.I., Da Prato G., Röckner M., “Existence of solutions to weak parabolic equations for measures”, Proc. London Math. Soc. (3), 88:3 (2004), 753–774
-
V. I. Bogachev, N. V. Krylov, M. Röckner, “Regularity and global bounds of densities of invariant measures of diffusion processes”, Dokl. Math., 72:3 (2005), 934–938
-
Bogachev V.I., Krylov N.V., Röckner M., “Elliptic equations for measures: Regularity and global bounds of densities”, J. Math. Pures Appl. (9), 85:6 (2006), 743–757
-
Bogachev V.I., Da Prato G., Röckner M., Stannat W., “Uniqueness of solutions to weak parabolic equations for measures”, Bull. Lond. Math. Soc., 39 (2007), 631–640
-
V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Estimates of densities of stationary distributions and transition probabilities of diffusion processes”, Theory Probab. Appl., 52:2 (2008), 209–236
-
S. V. Shaposhnikov, “The nonuniqueness of solutions to elliptic equations for probability measures”, Dokl. Math., 77:3 (2008), 401–403
-
Shaposhnikov S.V., “On nonuniqueness of solutions to elliptic equations for probability measures”, J. Funct. Anal., 254:10 (2008), 2690–2705
-
Bogachev V.I., Da Prato G., Röckner M., “On parabolic equations for measures”, Comm. Partial Differential Equations, 33:3 (2008), 397–418
-
V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Positive Densities of Transition Probabilities of Diffusion Processes”, Theory Probab. Appl., 53:2 (2009), 194–215
-
V. I. Bogachev, N. V. Krylov, M. Röckner, “Elliptic and parabolic equations for measures”, Russian Math. Surveys, 64:6 (2009), 973–1078
-
Bogachev V.I., Korolev A.V., Pilipenko A.Yu., “Non Uniform Averagings in the Ergodic Theorem for Stochastic Flows”, Doklady Mathematics, 81:3 (2010), 422–425
-
Arapostathis A., Borkar V.S., “Uniform Recurrence Properties of Controlled Diffusions and Applications to Optimal Control”, SIAM Journal on Control and Optimization, 48:7 (2010), 4181–4223
-
Bogachev V., Da Prato G., Roeckner M., “Existence and uniqueness of solutions for Fokker-Planck equations on Hilbert spaces”, Journal of Evolution Equations, 10:3 (2010), 487–509
-
Bogachev V.I., Kirillov A.I., Shaposhnikov S.V., “Invariant Measures of Diffusions with Gradient Drifts”, Doklady Mathematics, 82:2 (2010), 790–793
-
V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “On uniqueness problems related to elliptic equations for measures”, J Math Sci, 2011
-
Bogachev V., Da Prato G., Roeckner M., “Uniqueness for Solutions of Fokker-Planck Equations on Infinite Dimensional Spaces”, Comm Partial Differential Equations, 36:6 (2011), 925–939
-
Bogachev V.I., Kirillov A.I., Shaposhnikov S.V., “On Probability and Integrable Solutions to the Stationary Kolmogorov Equation”, Doklady Mathematics, 83:3 (2011), 309–313
-
S. V. Shaposhnikov, “On the uniqueness of a probabilistic solution of the Cauchy problem for the Fokker–Planck–Kolmogorov equation”, Theory Probab. Appl., 56:1 (2012), 96–115
-
V. I. Bogachev, A. I. Kirillov, S. V. Shaposhnikov, “Integrable solutions of the stationary Kolmogorov equation”, Dokl. Math, 85:3 (2012), 309
-
A. I. Noarov, “Stationary diffusion processes with discontinuous drift coefficients”, St. Petersburg Math. J., 24:5 (2013), 795–809
-
Bogachev V.I., Kirillov A.I., Shaposhnikov S.V., “Integriruemye resheniya statsionarnogo uravneniya kolmogorova”, Doklady akademii nauk, 444:1 (2012), 11–11
-
V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “On positive and probability solutions to the stationary Fokker-Planck-Kolmogorov equation”, Dokl. Math, 85:3 (2012), 350
-
Steven N. Evans, Peter L. Ralph, Sebastian J. Schreiber, Arnab Sen, “Stochastic population growth in spatially heterogeneous environments”, J. Math. Biol, 66:3 (2013), 423
-
V. I. Bogachev, A. I. Kirillov, S. V. Shaposhnikov, “A stationary Fokker-Planck-Kolmogorov equation with a potential”, Dokl. Math, 89:1 (2014), 24
-
V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “On existence of Lyapunov functions for a stationary Kolmogorov equation with a probability solution”, Dokl. Math, 90:1 (2014), 424
-
B.A.driana Escobedo-Trujillo, José Daniel López-Barrientos, “Nonzero-sum stochastic differential games with additive structure and average payoffs”, JDG, 1:4 (2014), 555
-
V. I. Bogachev, A. Yu. Veretennikov, S. V. Shaposhnikov, “Differentiability of invariant measures of diffusions with respect to a parameter”, Dokl. Math, 91:1 (2015), 76
-
Huang W., Ji M., Liu Zh., Yi Y., “Steady States of Fokker-Planck Equations: i. Existence”, J. Dyn. Differ. Equ., 27:3-4 (2015), 721–742
-
Huang W., Ji M., Liu Zh., Yi Y., “Steady States of Fokker-Planck Equations: II. Non-Existence”, J. Dyn. Differ. Equ., 27:3-4 (2015), 743–762
-
Huang W., Ji M., Liu Zh., Yi Y., “Integral Identity and Measure Estimates For Stationary Fokker-Planck Equations”, Ann. Probab., 43:4 (2015), 1712–1730
-
Huang W., Ji M., Liu Zh., Yi Y., “Steady States of Fokker-Planck Equations: III. Degenerate Diffusion”, J. Dyn. Differ. Equ., 28:1 (2016), 127–141
-
Huang W., Ji M., Liu Zh., Yi Y., “Stochastic Stability of Measures in Gradient Systems”, Physica D, 314 (2016), 9–17
-
Bogachev V.I., Shaposhnikov S.V., Veretennikov A.Yu., “Differentiability of solutions of stationary Fokker–Planck–Kolmogorov equations with respect to a parameter”, Discret. Contin. Dyn. Syst., 36:7 (2016), 3519–3543
-
V. I. Bogachev, A. I. Kirillov, S. V. Shaposhnikov, “Distances between stationary distributions of diffusions and solvability of nonlinear Fokker–Planck–Kolmogorov equations”, Theory Probab. Appl., 62:1 (2018), 12–34
-
Bogachev V.I., Shaposhnikov S.V., “Integrability and Continuity of Solutions to Double Divergence Form Equations”, Ann. Mat. Pura Appl., 196:5 (2017), 1609–1635
-
Huang W., Ji M., Liu Zh., Yi Y., “Concentration and Limit Behaviors of Stationary Measures”, Physica D, 369 (2018), 1–17
-
Adriana Escobedo-Trujillo B., Alaffita-Hernandez A., Lopez-Martinez R., “Constrained Stochastic Differential Games With Additive Structure: Average and Discount Payoffs”, J. Dyn. Games, 5:2 (2018), 109–141
-
Bogachev V.I., Krasovitskii T.I., Shaposhnikov S.V., “On Non-Uniqueness of Probability Solutions to the Two-Dimensional Stationary Fokker-Planck-Kolmogorov Equation”, Dokl. Math., 98:2 (2018), 475–479
-
Duran-Olivencia M.A., Gvalani R.S., Kalliadasis S., Pavliotis G.A., “Instability, Rupture and Fluctuations in Thin Liquid Films: Theory and Computations”, J. Stat. Phys., 174:3 (2019), 579–604
-
Tang W., “Exponential Ergodicity and Convergence For Generalized Reflected Brownian Motion”, Queueing Syst., 92:1-2 (2019), 83–101
-
Chen L., Dong Zh., Jiang J., Niu L., Zhai J., “Decomposition Formula and Stationary Measures For Stochastic Lotka-Volterra System With Applications to Turbulent Convection”, J. Math. Pures Appl., 125 (2019), 43–93
-
Arapostathis A., Caffarelli L., Pang G., Zheng Y., “Ergodic Control of a Class of Jump Diffusions With Finite Levy Measures and Rough Kernels”, SIAM J. Control Optim., 57:2 (2019), 1516–1540
-
Ji M., Shen Zh., Yi Y., “Quantitative Concentration of Stationary Measures”, Physica D, 399 (2019), 73–85
-
Ji M., Shen Zh., Yi Y., “Convergence to Equilibrium in Fokker-Planck Equations”, J. Dyn. Differ. Equ., 31:3, SI (2019), 1591–1615
-
Krasovitskii T.I., “Degenerate Elliptic Equations and Nonuniqueness of Solutions to the Kolmogorov Equation”, Dokl. Math., 100:1 (2019), 354–357
-
Ji M., Qi W., Shen Zh., Yi Y., “Existence of Periodic Probability Solutions to Fokker-Planck Equations With Applications”, J. Funct. Anal., 277:11 (2019), UNSP 108281
|
Number of views: |
This page: | 659 | Full text: | 225 | References: | 34 | First page: | 1 |
|