RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2002, Volume 193, Number 7, Pages 3–36 (Mi msb665)  

This article is cited in 49 scientific papers (total in 49 papers)

Uniqueness of solutions of elliptic equations and uniqueness of invariant measures of diffusions

V. I. Bogacheva, M. Röcknerb, W. Stannatb

a M. V. Lomonosov Moscow State University
b Bielefeld University

Abstract: Let $M$ be a complete connected Riemannian manifold of dimension $d$ and let $L$ be a second order elliptic operator on $M$ that has a representation $L=a^{ij}\partial_{x_i}\partial_{x_j}+b^i\partial_{x_i}$ in local coordinates, where $a^{ij}\in H^{p,1}_{\mathrm{loc}}$, $b^i\in L^p_{loc}$ for some $p>d$, and the matrix $(a^{ij})$ is non-singular. The aim of the paper is the study of the uniqueness of a solution of the elliptic equation $L^*\mu=0$ for probability measures $\mu$, which is understood in the weak sense: $\displaystyle\int L\varphi f d\mu=0$ for all $\varphi\in C_0^\infty(M)$. In addition, the uniqueness of invariant probability measures for the corresponding semigroups $(T_t^\mu)_{t\geqslant 0}$ generated by the operator $L$ is investigated. It is proved that if a probability measure $\mu$ on $M$ satisfies the equation $L^*\mu=0$ and $(L-I)(C^\infty_0(M))$ is dense in $L^1(M,\mu)$, then $\mu$ is a unique solution of this equation in the class of probability measures. Examples are presented (even with $a^{ij}=\delta^{ij}$ and smooth $b^i$) in which the equation $L^*\mu=0$ has more than one solution in the class of probability measures. Finally, it is shown that if $p>d+2$, then the semigroup $(T_t)_{t\geqslant 0}$ generated by $L$ has at most one invariant probability measure.

DOI: https://doi.org/10.4213/sm665

Full text: PDF file (465 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2002, 193:7, 945–976

Bibliographic databases:

UDC: 517.956+517.98+519.2
MSC: 58J05, 47F05
Received: 08.01.2002

Citation: V. I. Bogachev, M. Röckner, W. Stannat, “Uniqueness of solutions of elliptic equations and uniqueness of invariant measures of diffusions”, Mat. Sb., 193:7 (2002), 3–36; Sb. Math., 193:7 (2002), 945–976

Citation in format AMSBIB
\Bibitem{BogRocSta02}
\by V.~I.~Bogachev, M.~R\"ockner, W.~Stannat
\paper Uniqueness of solutions of elliptic equations and
uniqueness of invariant measures of diffusions
\jour Mat. Sb.
\yr 2002
\vol 193
\issue 7
\pages 3--36
\mathnet{http://mi.mathnet.ru/msb665}
\crossref{https://doi.org/10.4213/sm665}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1936848}
\zmath{https://zbmath.org/?q=an:1055.58009}
\elib{https://elibrary.ru/item.asp?id=14363201}
\transl
\jour Sb. Math.
\yr 2002
\vol 193
\issue 7
\pages 945--976
\crossref{https://doi.org/10.1070/SM2002v193n07ABEH000665}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000178959400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036662252}


Linking options:
  • http://mi.mathnet.ru/eng/msb665
  • https://doi.org/10.4213/sm665
  • http://mi.mathnet.ru/eng/msb/v193/i7/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. I. Bogachev, M. Röckner, “On $L^p$-uniqueness of symmetric diffusion operators on Riemannian manifolds”, Sb. Math., 194:7 (2003), 969–978  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. Bogachev V.I., Da Prato G., Röckner M., Sobol Z., “Global gradient bounds for dissipative diffusion operators”, C. R. Math. Acad. Sci. Paris, 339:4 (2004), 277–282  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    3. Bogachev V.I., Röckner M., Wang Feng-Yu, “Invariance implies Gibbsian: Some new results”, Comm. Math. Phys., 248:2 (2004), 335–355  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    4. Bogachev V.I., Da Prato G., Röckner M., “Existence of solutions to weak parabolic equations for measures”, Proc. London Math. Soc. (3), 88:3 (2004), 753–774  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    5. V. I. Bogachev, N. V. Krylov, M. Röckner, “Regularity and global bounds of densities of invariant measures of diffusion processes”, Dokl. Math., 72:3 (2005), 934–938  mathnet  mathscinet  zmath  isi  elib  elib
    6. Bogachev V.I., Krylov N.V., Röckner M., “Elliptic equations for measures: Regularity and global bounds of densities”, J. Math. Pures Appl. (9), 85:6 (2006), 743–757  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    7. Bogachev V.I., Da Prato G., Röckner M., Stannat W., “Uniqueness of solutions to weak parabolic equations for measures”, Bull. Lond. Math. Soc., 39 (2007), 631–640  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    8. V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Estimates of densities of stationary distributions and transition probabilities of diffusion processes”, Theory Probab. Appl., 52:2 (2008), 209–236  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    9. S. V. Shaposhnikov, “The nonuniqueness of solutions to elliptic equations for probability measures”, Dokl. Math., 77:3 (2008), 401–403  mathnet  crossref  mathscinet  zmath  isi  elib  elib  scopus
    10. Shaposhnikov S.V., “On nonuniqueness of solutions to elliptic equations for probability measures”, J. Funct. Anal., 254:10 (2008), 2690–2705  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    11. Bogachev V.I., Da Prato G., Röckner M., “On parabolic equations for measures”, Comm. Partial Differential Equations, 33:3 (2008), 397–418  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    12. V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Positive Densities of Transition Probabilities of Diffusion Processes”, Theory Probab. Appl., 53:2 (2009), 194–215  mathnet  crossref  crossref  isi  elib
    13. V. I. Bogachev, N. V. Krylov, M. Röckner, “Elliptic and parabolic equations for measures”, Russian Math. Surveys, 64:6 (2009), 973–1078  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    14. Bogachev V.I., Korolev A.V., Pilipenko A.Yu., “Non Uniform Averagings in the Ergodic Theorem for Stochastic Flows”, Doklady Mathematics, 81:3 (2010), 422–425  crossref  zmath  isi  elib  scopus
    15. Arapostathis A., Borkar V.S., “Uniform Recurrence Properties of Controlled Diffusions and Applications to Optimal Control”, SIAM Journal on Control and Optimization, 48:7 (2010), 4181–4223  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    16. Bogachev V., Da Prato G., Roeckner M., “Existence and uniqueness of solutions for Fokker-Planck equations on Hilbert spaces”, Journal of Evolution Equations, 10:3 (2010), 487–509  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    17. Bogachev V.I., Kirillov A.I., Shaposhnikov S.V., “Invariant Measures of Diffusions with Gradient Drifts”, Doklady Mathematics, 82:2 (2010), 790–793  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    18. V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “On uniqueness problems related to elliptic equations for measures”, J Math Sci, 2011  crossref  mathscinet  scopus  scopus  scopus
    19. Bogachev V., Da Prato G., Roeckner M., “Uniqueness for Solutions of Fokker-Planck Equations on Infinite Dimensional Spaces”, Comm Partial Differential Equations, 36:6 (2011), 925–939  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    20. Bogachev V.I., Kirillov A.I., Shaposhnikov S.V., “On Probability and Integrable Solutions to the Stationary Kolmogorov Equation”, Doklady Mathematics, 83:3 (2011), 309–313  crossref  mathscinet  zmath  zmath  isi  elib  elib  scopus
    21. S. V. Shaposhnikov, “On the uniqueness of a probabilistic solution of the Cauchy problem for the Fokker–Planck–Kolmogorov equation”, Theory Probab. Appl., 56:1 (2012), 96–115  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    22. V. I. Bogachev, A. I. Kirillov, S. V. Shaposhnikov, “Integrable solutions of the stationary Kolmogorov equation”, Dokl. Math, 85:3 (2012), 309  crossref  zmath  isi  elib  scopus  scopus  scopus
    23. A. I. Noarov, “Stationary diffusion processes with discontinuous drift coefficients”, St. Petersburg Math. J., 24:5 (2013), 795–809  mathnet  crossref  mathscinet  zmath  isi  elib
    24. Bogachev V.I., Kirillov A.I., Shaposhnikov S.V., “Integriruemye resheniya statsionarnogo uravneniya kolmogorova”, Doklady akademii nauk, 444:1 (2012), 11–11  crossref  mathscinet  zmath  elib
    25. V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “On positive and probability solutions to the stationary Fokker-Planck-Kolmogorov equation”, Dokl. Math, 85:3 (2012), 350  crossref  mathscinet  zmath  isi  elib  elib  scopus
    26. Steven N. Evans, Peter L. Ralph, Sebastian J. Schreiber, Arnab Sen, “Stochastic population growth in spatially heterogeneous environments”, J. Math. Biol, 66:3 (2013), 423  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    27. V. I. Bogachev, A. I. Kirillov, S. V. Shaposhnikov, “A stationary Fokker-Planck-Kolmogorov equation with a potential”, Dokl. Math, 89:1 (2014), 24  crossref  mathscinet  zmath  isi  scopus  scopus
    28. V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “On existence of Lyapunov functions for a stationary Kolmogorov equation with a probability solution”, Dokl. Math, 90:1 (2014), 424  crossref  mathscinet  zmath  scopus  scopus  scopus
    29. B.A.driana Escobedo-Trujillo, José Daniel López-Barrientos, “Nonzero-sum stochastic differential games with additive structure and average payoffs”, JDG, 1:4 (2014), 555  crossref  mathscinet  scopus  scopus  scopus
    30. V. I. Bogachev, A. Yu. Veretennikov, S. V. Shaposhnikov, “Differentiability of invariant measures of diffusions with respect to a parameter”, Dokl. Math, 91:1 (2015), 76  crossref  mathscinet  zmath  scopus  scopus  scopus
    31. Huang W., Ji M., Liu Zh., Yi Y., “Steady States of Fokker-Planck Equations: i. Existence”, J. Dyn. Differ. Equ., 27:3-4 (2015), 721–742  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    32. Huang W., Ji M., Liu Zh., Yi Y., “Steady States of Fokker-Planck Equations: II. Non-Existence”, J. Dyn. Differ. Equ., 27:3-4 (2015), 743–762  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    33. Huang W., Ji M., Liu Zh., Yi Y., “Integral Identity and Measure Estimates For Stationary Fokker-Planck Equations”, Ann. Probab., 43:4 (2015), 1712–1730  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    34. Huang W., Ji M., Liu Zh., Yi Y., “Steady States of Fokker-Planck Equations: III. Degenerate Diffusion”, J. Dyn. Differ. Equ., 28:1 (2016), 127–141  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    35. Huang W., Ji M., Liu Zh., Yi Y., “Stochastic Stability of Measures in Gradient Systems”, Physica D, 314 (2016), 9–17  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    36. Bogachev V.I., Shaposhnikov S.V., Veretennikov A.Yu., “Differentiability of solutions of stationary Fokker–Planck–Kolmogorov equations with respect to a parameter”, Discret. Contin. Dyn. Syst., 36:7 (2016), 3519–3543  crossref  mathscinet  zmath  isi  scopus
    37. V. I. Bogachev, A. I. Kirillov, S. V. Shaposhnikov, “Distances between stationary distributions of diffusions and solvability of nonlinear Fokker–Planck–Kolmogorov equations”, Theory Probab. Appl., 62:1 (2018), 12–34  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    38. Bogachev V.I., Shaposhnikov S.V., “Integrability and Continuity of Solutions to Double Divergence Form Equations”, Ann. Mat. Pura Appl., 196:5 (2017), 1609–1635  crossref  mathscinet  zmath  isi  scopus
    39. Huang W., Ji M., Liu Zh., Yi Y., “Concentration and Limit Behaviors of Stationary Measures”, Physica D, 369 (2018), 1–17  crossref  mathscinet  isi  scopus  scopus  scopus
    40. Adriana Escobedo-Trujillo B., Alaffita-Hernandez A., Lopez-Martinez R., “Constrained Stochastic Differential Games With Additive Structure: Average and Discount Payoffs”, J. Dyn. Games, 5:2 (2018), 109–141  crossref  mathscinet  zmath  isi  scopus
    41. Bogachev V.I., Krasovitskii T.I., Shaposhnikov S.V., “On Non-Uniqueness of Probability Solutions to the Two-Dimensional Stationary Fokker-Planck-Kolmogorov Equation”, Dokl. Math., 98:2 (2018), 475–479  crossref  mathscinet  zmath  isi  scopus
    42. Duran-Olivencia M.A., Gvalani R.S., Kalliadasis S., Pavliotis G.A., “Instability, Rupture and Fluctuations in Thin Liquid Films: Theory and Computations”, J. Stat. Phys., 174:3 (2019), 579–604  crossref  mathscinet  zmath  isi  scopus
    43. Tang W., “Exponential Ergodicity and Convergence For Generalized Reflected Brownian Motion”, Queueing Syst., 92:1-2 (2019), 83–101  crossref  mathscinet  zmath  isi
    44. Chen L., Dong Zh., Jiang J., Niu L., Zhai J., “Decomposition Formula and Stationary Measures For Stochastic Lotka-Volterra System With Applications to Turbulent Convection”, J. Math. Pures Appl., 125 (2019), 43–93  crossref  mathscinet  zmath  isi  scopus
    45. Arapostathis A., Caffarelli L., Pang G., Zheng Y., “Ergodic Control of a Class of Jump Diffusions With Finite Levy Measures and Rough Kernels”, SIAM J. Control Optim., 57:2 (2019), 1516–1540  crossref  mathscinet  zmath  isi
    46. Ji M., Shen Zh., Yi Y., “Quantitative Concentration of Stationary Measures”, Physica D, 399 (2019), 73–85  crossref  mathscinet  isi
    47. Ji M., Shen Zh., Yi Y., “Convergence to Equilibrium in Fokker-Planck Equations”, J. Dyn. Differ. Equ., 31:3, SI (2019), 1591–1615  crossref  mathscinet  zmath  isi
    48. Krasovitskii T.I., “Degenerate Elliptic Equations and Nonuniqueness of Solutions to the Kolmogorov Equation”, Dokl. Math., 100:1 (2019), 354–357  crossref  zmath  isi
    49. Ji M., Qi W., Shen Zh., Yi Y., “Existence of Periodic Probability Solutions to Fokker-Planck Equations With Applications”, J. Funct. Anal., 277:11 (2019), UNSP 108281  crossref  mathscinet  isi
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:659
    Full text:225
    References:34
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021