RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2002, Volume 193, Number 12, Pages 69–104 (Mi msb700)  

This article is cited in 8 scientific papers (total in 8 papers)

Asymptotics of solutions of the stationary Navier–Stokes system of equations in a domain of layer type

K. Pileckas

Institute of Mathematics and Informatics

Abstract: The stationary Navier–Stokes system of equations is considered in a domain $\Omega \subset\mathbb R^3$ coinciding for large $|x|$ with the layer $\Pi =\mathbb R^2\times (0,1)$. A theorem is proved about the asymptotic behaviour of the solutions as $|x|\to\infty$. In particular, it is proved that for arbitrary data of the problem the solutions having non-zero flux through a cylindrical cross-section of the layer behave at infinity like the solutions of the linear Stokes system.

DOI: https://doi.org/10.4213/sm700

Full text: PDF file (437 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2002, 193:12, 1801–1836

Bibliographic databases:

UDC: 517.9
MSC: Primary 35Q30, 35B40; Secondary 35A05, 46E35, 76D05
Received: 10.08.2000 and 11.03.2002

Citation: K. Pileckas, “Asymptotics of solutions of the stationary Navier–Stokes system of equations in a domain of layer type”, Mat. Sb., 193:12 (2002), 69–104; Sb. Math., 193:12 (2002), 1801–1836

Citation in format AMSBIB
\Bibitem{Pil02}
\by K.~Pileckas
\paper Asymptotics of solutions of the stationary Navier--Stokes system of equations in a~domain of layer type
\jour Mat. Sb.
\yr 2002
\vol 193
\issue 12
\pages 69--104
\mathnet{http://mi.mathnet.ru/msb700}
\crossref{https://doi.org/10.4213/sm700}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1992105}
\zmath{https://zbmath.org/?q=an:1069.35052}
\transl
\jour Sb. Math.
\yr 2002
\vol 193
\issue 12
\pages 1801--1836
\crossref{https://doi.org/10.1070/SM2002v193n12ABEH000700}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000181721200010}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036875429}


Linking options:
  • http://mi.mathnet.ru/eng/msb700
  • https://doi.org/10.4213/sm700
  • http://mi.mathnet.ru/eng/msb/v193/i12/p69

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. J. Math. Sci. (N. Y.), 130:4 (2005), 4852–4870  mathnet  crossref  mathscinet  zmath
    2. V. Keblikas, K. Pileckas, “Existence of a nonstationary Poiseuille solution”, Siberian Math. J., 46:3 (2005), 514–526  mathnet  crossref  mathscinet  zmath  isi  elib
    3. Pileckas K., Zaleskis L., “Weighted coercive estimates of solutions to the Stokes problem in parabolically growing layer”, Asymptot. Anal., 54:3-4 (2007), 211–233  mathscinet  zmath  isi  elib
    4. Chipot M., Mardare S., “Asymptotic behaviour of the Stokes problem in cylinders becoming unbounded in one direction”, J. Math. Pures Appl. (9), 90:2 (2008), 133–159  crossref  mathscinet  zmath  isi  scopus  scopus
    5. Nazarov S.A., Specovius-Neugebauer M., “Artificial boundary conditions for the Stokes and Navier–Stokes equations in domains that are layer-like at infinity”, Z. Anal. Anwend., 27:2 (2008), 125–155  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    6. Pileckas K., Specovius-Neugebauer M., “Asymptotics of solutions to the Navier–Stokes system with nonzero flux in a layer-like domain”, Asymptotic Analysis, 69:3–4 (2010), 219–231  mathscinet  zmath  isi  elib
    7. K. Kaulakytė, K. Pileckas, “On the Nonhomogeneous Boundary Value Problem for the Navier–Stokes System in a Class of Unbounded Domains”, J. Math. Fluid Mech, 2012  crossref  mathscinet  zmath  isi  scopus  scopus
    8. Pileckas K., Specovius-Neugebauer M., “Spatial Behavior of Solutions to the Time Periodic Stokes System in a Three Dimensional Layer”, J. Differ. Equ., 263:10 (2017), 6317–6346  crossref  mathscinet  zmath  isi  scopus
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:291
    Full text:91
    References:72
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019