RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2010, Volume 201, Number 3, Pages 39–62 (Mi msb7306)  

This article is cited in 2 scientific papers (total in 2 papers)

The Taylor spectrum and transversality for a Heisenberg algebra of operators

A. A. Dosi

Middle East Technical University Northern Cyprus Campus

Abstract: A problem on noncommutative holomorphic functional calculus is considered for a Banach module over a finite-dimensional nilpotent Lie algebra. As the main result, the transversality property of algebras of noncommutative holomorphic functions with respect to the Taylor spectrum is established for a family of bounded linear operators generating a Heisenberg algebra.
Bibliography: 25 titles.

Keywords: holomorphic function of elements of a Lie algebra, Taylor spectrum, transversality property, inverting the Fréchet completion.

DOI: https://doi.org/10.4213/sm7306

Full text: PDF file (604 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2010, 201:3, 355–375

Bibliographic databases:

UDC: 517.984.22
MSC: Primary 46H30, 17B30; Secondary 17B35
Received: 02.10.2008 and 14.10.2009

Citation: A. A. Dosi, “The Taylor spectrum and transversality for a Heisenberg algebra of operators”, Mat. Sb., 201:3 (2010), 39–62; Sb. Math., 201:3 (2010), 355–375

Citation in format AMSBIB
\Bibitem{Dos10}
\by A.~A.~Dosi
\paper The Taylor spectrum and transversality for a~Heisenberg algebra of operators
\jour Mat. Sb.
\yr 2010
\vol 201
\issue 3
\pages 39--62
\mathnet{http://mi.mathnet.ru/msb7306}
\crossref{https://doi.org/10.4213/sm7306}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2655839}
\zmath{https://zbmath.org/?q=an:1214.46031}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010SbMat.201..355D}
\elib{http://elibrary.ru/item.asp?id=19066191}
\transl
\jour Sb. Math.
\yr 2010
\vol 201
\issue 3
\pages 355--375
\crossref{https://doi.org/10.1070/SM2010v201n03ABEH004076}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000279452200003}


Linking options:
  • http://mi.mathnet.ru/eng/msb7306
  • https://doi.org/10.4213/sm7306
  • http://mi.mathnet.ru/eng/msb/v201/i3/p39

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. Dosi, “Taylor functional calculus for supernilpotent Lie algebra of operators”, J. Operator Theory, 63:1 (2010), 191–216  mathscinet  zmath  isi  elib
    2. A. Dosi, “Noncommutative affine spaces and Lie-complete rings”, C. R. Math. Acad. Sci. Paris, 353:2 (2015), 149–153  crossref  mathscinet  zmath  isi  scopus
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:331
    Full text:57
    References:21
    First page:11

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019