|
This article is cited in 2 scientific papers (total in 2 papers)
The Taylor spectrum and transversality for a Heisenberg algebra of operators
A. A. Dosi Middle East Technical University Northern Cyprus Campus
Abstract:
A problem on noncommutative holomorphic functional calculus is considered for a Banach module over a finite-dimensional nilpotent Lie algebra. As the main result, the transversality property of algebras of noncommutative holomorphic functions with respect to the Taylor spectrum is established for a family of bounded linear operators generating a Heisenberg algebra.
Bibliography: 25 titles.
Keywords:
holomorphic function of elements of a Lie algebra, Taylor spectrum, transversality property, inverting the Fréchet completion.
DOI:
https://doi.org/10.4213/sm7306
Full text:
PDF file (604 kB)
References:
PDF file
HTML file
English version:
Sbornik: Mathematics, 2010, 201:3, 355–375
Bibliographic databases:
UDC:
517.984.22
MSC: Primary 46H30, 17B30; Secondary 17B35 Received: 02.10.2008 and 14.10.2009
Citation:
A. A. Dosi, “The Taylor spectrum and transversality for a Heisenberg algebra of operators”, Mat. Sb., 201:3 (2010), 39–62; Sb. Math., 201:3 (2010), 355–375
Citation in format AMSBIB
\Bibitem{Dos10}
\by A.~A.~Dosi
\paper The Taylor spectrum and transversality for a~Heisenberg algebra of operators
\jour Mat. Sb.
\yr 2010
\vol 201
\issue 3
\pages 39--62
\mathnet{http://mi.mathnet.ru/msb7306}
\crossref{https://doi.org/10.4213/sm7306}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2655839}
\zmath{https://zbmath.org/?q=an:1214.46031}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010SbMat.201..355D}
\elib{https://elibrary.ru/item.asp?id=19066191}
\transl
\jour Sb. Math.
\yr 2010
\vol 201
\issue 3
\pages 355--375
\crossref{https://doi.org/10.1070/SM2010v201n03ABEH004076}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000279452200003}
Linking options:
http://mi.mathnet.ru/eng/msb7306https://doi.org/10.4213/sm7306 http://mi.mathnet.ru/eng/msb/v201/i3/p39
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. Dosi, “Taylor functional calculus for supernilpotent Lie algebra of operators”, J. Operator Theory, 63:1 (2010), 191–216
-
A. Dosi, “Noncommutative affine spaces and Lie-complete rings”, C. R. Math. Acad. Sci. Paris, 353:2 (2015), 149–153
|
Number of views: |
This page: | 401 | Full text: | 105 | References: | 31 | First page: | 11 |
|