|
This article is cited in 51 scientific papers (total in 52 papers)
Systems of Markov functions generated by graphs and the asymptotics of their Hermite-Padé approximants
A. I. Aptekarev, V. G. Lysov M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences
Abstract:
The paper considers Hermite-Padé approximants to systems of Markov functions defined by means of directed graphs. The minimization problem for the energy functional is investigated for a vector measure whose components are related by a given interaction matrix and supported in some fixed system of intervals. The weak asymptotics of the approximants are obtained in terms of the solution of this problem. The defining graph is allowed to contain undirected cycles, so the minimization problem in question is considered within the class
of measures whose masses are not fixed, but allowed to ‘flow’ between intervals. Strong asymptotic formulae are also obtained. The basic tool that is used is an algebraic Riemann surface defined by means of the supports of the components of the extremal measure. The strong asymptotic formulae involve standard functions on this Riemann surface and solutions of some boundary value problems on it. The proof depends upon an asymptotic solution of the corresponding matrix Riemann-Hilbert problem.
Bibliography: 40 titles.
Keywords:
Hermite-Padé approximants, multiple orthogonal polynomials, weak and strong asymptotics, extremal equilibrium problems for a system of measures, matrix Riemann-Hilbert problem.
Author to whom correspondence should be addressed
DOI:
https://doi.org/10.4213/sm7515
Full text:
PDF file (1028 kB)
References:
PDF file
HTML file
English version:
Sbornik: Mathematics, 2010, 201:2, 183–234
Bibliographic databases:
UDC:
517.53
MSC: Primary 42C05, 41A21; Secondary 30E25 Received: 22.12.2008 and 03.09.2009
Citation:
A. I. Aptekarev, V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite-Padé approximants”, Mat. Sb., 201:2 (2010), 29–78; Sb. Math., 201:2 (2010), 183–234
Citation in format AMSBIB
\Bibitem{AptLys10}
\by A.~I.~Aptekarev, V.~G.~Lysov
\paper Systems of Markov functions generated by graphs and the asymptotics of their Hermite-Pad\'e approximants
\jour Mat. Sb.
\yr 2010
\vol 201
\issue 2
\pages 29--78
\mathnet{http://mi.mathnet.ru/msb7515}
\crossref{https://doi.org/10.4213/sm7515}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2656323}
\zmath{https://zbmath.org/?q=an:1188.42009}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010SbMat.201..183A}
\elib{https://elibrary.ru/item.asp?id=19066184}
\transl
\jour Sb. Math.
\yr 2010
\vol 201
\issue 2
\pages 183--234
\crossref{https://doi.org/10.1070/SM2010v201n02ABEH004070}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000277376300008}
\elib{https://elibrary.ru/item.asp?id=15334668}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954770073}
Linking options:
http://mi.mathnet.ru/eng/msb7515https://doi.org/10.4213/sm7515 http://mi.mathnet.ru/eng/msb/v201/i2/p29
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. N. Sorokin, “On multiple orthogonal polynomials for discrete Meixner measures”, Sb. Math., 201:10 (2010), 1539–1561
-
Starovoitov A.P., Ryabchenko N.V., Astafeva A.V., “Ob asimptotike sovmestnykh approksimatsii pade dlya dvukh eksponent”, Vesnik Vitsebskaga dzyarzhainaga universiteta, 4:64 (2011), 5–9
-
E. A. Rakhmanov, “The asymptotics of Hermite-Padé polynomials for two Markov-type functions”, Sb. Math., 202:1 (2011), 127–134
-
A. I. Aptekarev, A. Kuijlaars, “Hermite–Padé approximations and multiple orthogonal polynomial ensembles”, Russian Math. Surveys, 66:6 (2011), 1133–1199
-
A. I. Aptekarev, V. I. Buslaev, A. Martínez-Finkelshtein, S. P. Suetin, “Padé approximants, continued fractions, and orthogonal polynomials”, Russian Math. Surveys, 66:6 (2011), 1049–1131
-
A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials”, Sb. Math., 202:2 (2011), 155–206
-
A. I. Aptekarev, D. N. Tulyakov, “Asymptotics of Meixner polynomials and Christoffel-Darboux kernels”, Trans. Moscow Math. Soc., 73 (2012), 67–106
-
N. V. Ryabchenko, A. P. Starovoitov, G. N. Kazimirov, “Ermitovskaya approksimatsiya dvukh eksponent”, PFMT, 2012, no. 1(10), 97–100
-
A. I. Aptekarev, “Integriruemye poludiskretizatsii giperbolicheskikh uravnenii – “skhemnaya” dispersiya i mnogomernaya perspektiva”, Preprinty IPM im. M. V. Keldysha, 2012, 020, 28 pp.
-
A. I. Aptekarev, D. N. Tulyakov, “Geometry of Hermite-Padé approximants for system of functions $\{f,f^2\}$ with three branch points”, Preprinty IPM im. M. V. Keldysha, 2012, 077, 25 pp.
-
E. A. Rakhmanov, S. P. Suetin, “Asymptotic behaviour of the Hermite–Padé polynomials of the 1st kind for a pair of functions forming a Nikishin system”, Russian Math. Surveys, 67:5 (2012), 954–956
-
Beckermann B., Kalyagin V., Matos A.C., Wielonsky F., “Equilibrium problems for vector potentials with semidefinite interaction matrices and constrained masses”, Constr. Approx., 37:1 (2013), 101–134
-
A. P. Starovoitov, “Ermitovskaya approksimatsiya dvukh eksponent”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 13:1(2) (2013), 87–91
-
A. P. Starovoitov, “Approksimatsii Ermita–Pade dlya sistemy funktsii Mittag-Lefflera”, PFMT, 2013, no. 1(14), 81–87
-
Baratchart L., Yattselev M. L., “Padé approximants to certain elliptic-type functions”, J. Anal. Math., 121 (2013), 31–86
-
E. A. Rakhmanov, S. P. Suetin, “The distribution of the zeros of the Hermite-Padé polynomials for a pair of functions forming a Nikishin system”, Sb. Math., 204:9 (2013), 1347–1390
-
S. Delvaux, A. López, G. López Lagomasino, “A family of Nikishin systems with periodic recurrence coefficients”, Sb. Math., 204:1 (2013), 43–74
-
N. Zorii, “Necessary and sufficient conditions for the solvability of the Gauss variational problem for infinite dimensional vector measures”, Potential Anal., 41:1 (2014), 81–115
-
R. K. Kovacheva, S. P. Suetin, “Distribution of zeros of the Hermite–Padé polynomials for a system of three functions, and the Nuttall condenser”, Proc. Steklov Inst. Math., 284 (2014), 168–191
-
A. Aptekarev, J. Arvesú, “Asymptotics for multiple Meixner polynomials”, J. Math. Anal. Appl., 411:2 (2014), 485–505
-
M. A. Lapik, “Formula Buyarova–Rakhmanova dlya vneshnego polya v vektornoi zadache ravnovesiya logarifmicheskogo potentsiala”, Preprinty IPM im. M. V. Keldysha, 2014, 082, 15 pp.
-
A. I. Aptekarev, A. I. Bogolyubskii, “Matrichnaya zadacha Rimana–Gilberta dlya approksimatsii Pade po ortogonalnym razlozheniyam”, Preprinty IPM im. M. V. Keldysha, 2014, 103, 16 pp.
-
A. P. Starovoitov, “On asymptotic form of the Hermite–Pade approximations for a system of Mittag-Leffler functions”, Russian Math. (Iz. VUZ), 58:9 (2014), 49–56
-
S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation”, Russian Math. Surveys, 70:5 (2015), 901–951
-
V. M. Buchstaber, V. N. Dubinin, V. A. Kaliaguine, B. S. Kashin, V. N. Sorokin, S. P. Suetin, D. N. Tulyakov, B. N. Chetverushkin, E. M. Chirka, A. A. Shkalikov, “Alexander Ivanovich Aptekarev (on his 60th birthday)”, Russian Math. Surveys, 70:5 (2015), 965–973
-
Aptekarev A.I. Yattselev M.L., “Padé approximants for functions with branch points — strong asymptotics of Nuttall–Stahl polynomials”, Acta Math., 215:2 (2015), 217–280
-
Aptekarev A.I. Lopez Lagomasino G. Martinez-Finkelshtein A., “Strong asymptotics for the Pollaczek multiple orthogonal polynomials”, Dokl. Math., 92:3 (2015), 709–713
-
M. A. Lapik, “Families of vector measures which are equilibrium measures in an external field”, Sb. Math., 206:2 (2015), 211–224
-
V. N. Sorokin, “Ob asimptoticheskikh rezhimakh sovmestnykh mnogochlenov Meiksnera”, Preprinty IPM im. M. V. Keldysha, 2016, 046, 32 pp.
-
V. G. Lysov, D. N. Tulyakov, “O vektornoi teoretiko-potentsialnoi zadache s matritsei Anzhelesko”, Preprinty IPM im. M. V. Keldysha, 2016, 110, 36 pp.
-
Aptekarev A.I., “The Mhaskar–Saff Variational Principle and Location of the Shocks of Certain Hyperbolic Equations”, Modern Trends in Constructive Function Theory, Contemporary Mathematics, 661, ed. Hardin D. Lubinsky D. Simanek B., Amer Mathematical Soc, 2016, 167–186
-
A. I. Aptekarev, A. I. Bogolyubskii, M. Yattselev, “Convergence of ray sequences of Frobenius-Padé approximants”, Sb. Math., 208:3 (2017), 313–334
-
Aptekarev A.I. Van Assche W. Yattselev M.L., “Hermite-Padé Approximants for a Pair of Cauchy Transforms with Overlapping Symmetric Supports”, Commun. Pure Appl. Math., 70:3 (2017), 444–510
-
A. I. Aptekarev, G. López Lagomasino, A. Martínez-Finkelshtein, “On Nikishin systems with discrete components and weak asymptotics of multiple orthogonal polynomials”, Russian Math. Surveys, 72:3 (2017), 389–449
-
A. P. Starovoitov, “Asymptotics of Diagonal Hermite–Padé Polynomials for the Collection of Exponential Functions”, Math. Notes, 102:2 (2017), 277–288
-
A. V. Komlov, R. V. Palvelev, S. P. Suetin, E. M. Chirka, “Hermite–Padé approximants for meromorphic functions on a compact Riemann surface”, Russian Math. Surveys, 72:4 (2017), 671–706
-
V. G. Lysov, “Silnaya asimptotika approksimatsii Ermita–Pade dlya sistemy Nikishina s vesami Yakobi”, Preprinty IPM im. M. V. Keldysha, 2017, 085, 35 pp.
-
V. G. Lysov, D. N. Tulyakov, “On a Vector Potential-Theory Equilibrium Problem with the Angelesco Matrix”, Proc. Steklov Inst. Math., 298 (2017), 170–200
-
V. G. Lysov, “Ob approksimatsiyakh Ermita–Pade dlya proizvedeniya dvukh logarifmov”, Preprinty IPM im. M. V. Keldysha, 2017, 141, 24 pp.
-
V. G. Lysov, “O diofantovykh priblizheniyakh proizvedeniya logarifmov”, Preprinty IPM im. M. V. Keldysha, 2018, 158, 20 pp.
-
V. G. Lysov, “Asymptotics of Jacobi–Piñeiro Polynomials and Functions of the Second Kind”, Math. Notes, 103:3 (2018), 495–498
-
E. A. Rakhmanov, “Zero distribution for Angelesco Hermite–Padé polynomials”, Russian Math. Surveys, 73:3 (2018), 457–518
-
G. López Lagomasino, W. Van Assche, “Riemann-Hilbert analysis for a Nikishin system”, Sb. Math., 209:7 (2018), 1019–1050
-
S. P. Suetin, “On a new approach to the problem of distribution of zeros of Hermite–Padé polynomials for a Nikishin system”, Proc. Steklov Inst. Math., 301 (2018), 245–261
-
M. A. Lapik, D. N. Tulyakov, “On expanding neighborhoods of local universality of Gaussian unitary ensembles”, Proc. Steklov Inst. Math., 301 (2018), 170–179
-
V. G. Lysov, D. N. Tulyakov, “On the supports of vector equilibrium measures in the Angelesco problem with nested intervals”, Proc. Steklov Inst. Math., 301 (2018), 180–196
-
E. M. Chirka, “Potentials on a compact Riemann surface”, Proc. Steklov Inst. Math., 301 (2018), 272–303
-
S. P. Suetin, “On an Example of the Nikishin System”, Math. Notes, 104:6 (2018), 905–914
-
Lapik M.A., “Integral Formulas For Recovering Extremal Measures For Vector Constrained Energy Problems”, Lobachevskii J. Math., 40:9, SI (2019), 1355–1362
-
Aptekarev A.I., Lapik M.A., Lysov V.G., “Direct and Inverse Problems For Vector Logarithmic Potentials With External Fields”, Anal. Math. Phys., 9:3 (2019), 919–935
-
N. R. Ikonomov, S. P. Suetin, “Scalar Equilibrium Problem and the Limit Distribution of Zeros of Hermite–Padé Polynomials of Type II”, Proc. Steklov Inst. Math., 309 (2020), 159–182
-
V. G. Lysov, “Mixed Type Hermite–Padé Approximants for a Nikishin System”, Proc. Steklov Inst. Math., 311 (2020), 199–213
|
Number of views: |
This page: | 885 | Full text: | 198 | References: | 57 | First page: | 21 |
|