RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2010, Volume 201, Number 7, Pages 67–98 (Mi msb7567)  

This article is cited in 5 scientific papers (total in 5 papers)

The solvability of the first initial-boundary problem for parabolic and degenerate parabolic equations in domains with a conical point

S. P. Degtyarev

Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences

Abstract: The first initial-boundary problem for second-order parabolic and degenerate parabolic equations is investigated in a domain with a conical or angular point. The means of attack is already known and uses weighted classes of smooth or integrable functions. Sufficient conditions for a unique solution to exist and for coercive estimates for the solution to be obtained are formulated in terms of the angular measure of the solid angle and the exponent of the weight. It is also shown that if these conditions fail to hold, then the parabolic problem has elliptic properties, that is, it can have a nonzero kernel or can be nonsolvable, and, in the latter case, it is not even a Fredholm problem. A parabolic equation and an equation with some degeneracy or a singularity at a conical point are considered.
Bibliography: 49 titles.

Keywords: parabolic equation, irregular domain, coercive estimate, spectral properties.

DOI: https://doi.org/10.4213/sm7567

Full text: PDF file (739 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2010, 201:7, 999–1028

Bibliographic databases:

Document Type: Article
UDC: 517.954+517.956.8+517.956.4
MSC: Primary 35K20; Secondary 35K65
Received: 08.04.2009 and 25.11.2009

Citation: S. P. Degtyarev, “The solvability of the first initial-boundary problem for parabolic and degenerate parabolic equations in domains with a conical point”, Mat. Sb., 201:7 (2010), 67–98; Sb. Math., 201:7 (2010), 999–1028

Citation in format AMSBIB
\Bibitem{Deg10}
\by S.~P.~Degtyarev
\paper The solvability of the first initial-boundary problem for parabolic and degenerate parabolic equations in domains with a~conical point
\jour Mat. Sb.
\yr 2010
\vol 201
\issue 7
\pages 67--98
\mathnet{http://mi.mathnet.ru/msb7567}
\crossref{https://doi.org/10.4213/sm7567}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2907815}
\zmath{https://zbmath.org/?q=an:1213.35240}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010SbMat.201..999D}
\elib{http://elibrary.ru/item.asp?id=19066217}
\transl
\jour Sb. Math.
\yr 2010
\vol 201
\issue 7
\pages 999--1028
\crossref{https://doi.org/10.1070/SM2010v201n07ABEH004100}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000281540900004}
\elib{http://elibrary.ru/item.asp?id=17128340}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77958614315}


Linking options:
  • http://mi.mathnet.ru/eng/msb7567
  • https://doi.org/10.4213/sm7567
  • http://mi.mathnet.ru/eng/msb/v201/i7/p67

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Kheloufi A., Sadallah B.-Kh., “On the regularity of the heat equation solution in non-cylindrical domains: Two approaches”, Appl. Math. Comput., 218:5 (2011), 1623–1633  crossref  mathscinet  zmath  isi  scopus  scopus
    2. Kheloufi A., “Resolutions of parabolic equations in non-symmetric conical domains”, Electron. J. Differential Equations, 2012 (2012), 116, 14 pp.  mathscinet  zmath  isi  elib
    3. A. Kheloufi, “Existence and uniqueness results for parabolic equations with Robin type boundary conditions in a non-regular domain of $\mathbb R^3$”, Appl. Math. Comput., 220 (2013), 756–769  crossref  mathscinet  zmath  isi  scopus  scopus
    4. A. Kheloufi, Boubaker-Khaled Sadallah, “Study of the heat equation in a symmetric conical type domain of $\mathbb R^{N+1}$”, Math. Methods Appl. Sci., 37:12 (2014), 1807–1818  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    5. Ferroudj Boulkouane, Arezki Kheloufim, “On a second order linear parabolic equation with variable coefficients in a non-regular domain of $\mathbb{R}^{3}$”, Zhurn. SFU. Ser. Matem. i fiz., 11:4 (2018), 416–429  mathnet  crossref
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:443
    Full text:83
    References:44
    First page:15

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019