RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2003, Volume 194, Number 8, Pages 13–24 (Mi msb759)  

This article is cited in 12 scientific papers (total in 12 papers)

On Sasakian hypersurfaces in 6-dimensional Hermitian submanifolds of the Cayley algebra

M. B. Banaru

Smolensk Humanitarian University

Abstract: A criterion for the minimality of a Sasakian hypersurface in a 6-dimensional Hermitian submanifold of the octave algebra is found. It is proved that the type number of a Sasakian hypersurface in a 6-dimensional Hermitian submanifold of the octave algebra is four or five. It is also proved that a Sasakian hypersurface in a 6-dimensional Hermitian submanifold of the Cayley algebra is minimal if and only if it is ruled.

DOI: https://doi.org/10.4213/sm759

Full text: PDF file (253 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2003, 194:8, 1125–1136

Bibliographic databases:

UDC: 513.74
MSC: Primary 53C55; Secondary 53C15, 53C40
Received: 04.07.2002

Citation: M. B. Banaru, “On Sasakian hypersurfaces in 6-dimensional Hermitian submanifolds of the Cayley algebra”, Mat. Sb., 194:8 (2003), 13–24; Sb. Math., 194:8 (2003), 1125–1136

Citation in format AMSBIB
\Bibitem{Ban03}
\by M.~B.~Banaru
\paper On Sasakian hypersurfaces in 6-dimensional Hermitian
submanifolds of the~Cayley algebra
\jour Mat. Sb.
\yr 2003
\vol 194
\issue 8
\pages 13--24
\mathnet{http://mi.mathnet.ru/msb759}
\crossref{https://doi.org/10.4213/sm759}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2034530}
\zmath{https://zbmath.org/?q=an:1079.53103}
\transl
\jour Sb. Math.
\yr 2003
\vol 194
\issue 8
\pages 1125--1136
\crossref{https://doi.org/10.1070/SM2003v194n08ABEH000759}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000186261600011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0346958134}


Linking options:
  • http://mi.mathnet.ru/eng/msb759
  • https://doi.org/10.4213/sm759
  • http://mi.mathnet.ru/eng/msb/v194/i8/p13

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. B. Banaru, “On almost contact metric hypersurfaces with type number 1 in $6$-dimensional Kählerian submanifolds of Cayley algebra”, Russian Math. (Iz. VUZ), 58:10 (2014), 10–14  mathnet  crossref
    2. M. B. Banaru, “On almost contact metric $1$-hypersurfaces in Kählerian manifolds”, Siberian Math. J., 55:4 (2014), 585–588  mathnet  crossref  mathscinet  isi
    3. M. B. Banaru, “Almost contact metric hypersurfaces with type number $0$ or $1$ in nearly-Kählerian manifolds”, Moscow University Mathematics Bulletin, 69:3 (2014), 132–134  mathnet  crossref  mathscinet
    4. M. B. Banaru, “The axiom of cosymplectic surfaces and $W_4$-manifolds”, Moscow University Mathematics Bulletin, 70:5 (2015), 213–215  mathnet  crossref  mathscinet  isi
    5. M. B. Banaru, “The Axiom of Sasakian Hypersurfaces and Six-Dimensional Hermitian Submanifolds of the Octonion Algebra”, Math. Notes, 99:1 (2016), 155–159  mathnet  crossref  crossref  mathscinet  isi  elib
    6. L. V. Stepanova, G. A. Banaru, M. B. Banaru, “On quasi-Sasakian hypersurfaces of Kählerian manifolds”, Russian Math. (Iz. VUZ), 60:1 (2016), 73–75  mathnet  crossref  isi
    7. Ahmad Abu-Saleem, Mihail B. Banaru, Galina A. Banaru, “A note on $2$-hypersurfaces of the nearly Kählerian six-sphere”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2017, no. 3, 107–114  mathnet
    8. M. B. Banaru, “On almost contact metric hypersurfaces with type number $1$ or $0$ in $6$-dimensional Hermitian submanifolds of the Cayley algebra”, Siberian Math. J., 58:4 (2017), 559–563  mathnet  crossref  crossref  isi  elib  elib
    9. Banaru M., “A Note on Geometry of Special Hermitian Manifolds”, Lobachevskii J. Math., 39:1, SI (2018), 20–24  crossref  mathscinet  zmath  isi  scopus
    10. M. B. Banaru, “Almost contact metric hypersurfaces with small type numbers in $W_4$-manifolds”, Moscow University Mathematics Bulletin, 73:1 (2018), 38–40  mathnet  crossref  mathscinet  zmath  isi
    11. Banaru M., Banaru G., “A Note on W-3-Manifolds”, Publ. Inst. Math.-Beograd, 103:117 (2018), 17–23  crossref  mathscinet  isi  scopus
    12. M. B. Banaru, “O shestimernoi sfere s priblizhenno kelerovoi strukturoi”, Geometriya, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 146, VINITI RAN, M., 2018, 3–16  mathnet  mathscinet
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:250
    Full text:93
    References:48
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020