RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2011, Volume 202, Number 12, Pages 23–56 (Mi msb7725)  

This article is cited in 2 scientific papers (total in 2 papers)

An estimate for the sum of a Dirichlet series in terms of the minimum of its modulus on a vertical line segment

A. M. Gaisina, Zh. G. Rakhmatullinab

a Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
b Bashkir State University

Abstract: The behaviour of the sum of an entire Dirichlet series is analyzed in terms of the minimum of its modulus on a system of vertical line segments. Also a more general problem, connected with the Pólya conjecture is posed and solved. It concerns the minimum modulus of an entire function with Fabri gaps and its growth along curves going to infinity.
Bibliography: 33 titles.

Keywords: Dirichlet series, minimum modulus, Fejér gaps.
Author to whom correspondence should be addressed

DOI: https://doi.org/10.4213/sm7725

Full text: PDF file (760 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2011, 202:12, 1741–1773

Bibliographic databases:

UDC: 517.53+517.537.7
MSC: 30B50, 30D15
Received: 12.04.2010 and 06.09.2011

Citation: A. M. Gaisin, Zh. G. Rakhmatullina, “An estimate for the sum of a Dirichlet series in terms of the minimum of its modulus on a vertical line segment”, Mat. Sb., 202:12 (2011), 23–56; Sb. Math., 202:12 (2011), 1741–1773

Citation in format AMSBIB
\Bibitem{GaiRak11}
\by A.~M.~Gaisin, Zh.~G.~Rakhmatullina
\paper An estimate for the sum of a~Dirichlet series in terms of the minimum of its modulus on a~vertical line segment
\jour Mat. Sb.
\yr 2011
\vol 202
\issue 12
\pages 23--56
\mathnet{http://mi.mathnet.ru/msb7725}
\crossref{https://doi.org/10.4213/sm7725}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2919248}
\zmath{https://zbmath.org/?q=an:1253.30009}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202.1741G}
\elib{https://elibrary.ru/item.asp?id=19066253}
\transl
\jour Sb. Math.
\yr 2011
\vol 202
\issue 12
\pages 1741--1773
\crossref{https://doi.org/10.1070/SM2011v202n12ABEH004206}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000300154400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84857393062}


Linking options:
  • http://mi.mathnet.ru/eng/msb7725
  • https://doi.org/10.4213/sm7725
  • http://mi.mathnet.ru/eng/msb/v202/i12/p23

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. M. Gaisin, “Minimum of modulus of the sum of Dirichlet series converging in a half-plane”, Ufa Math. J., 5:4 (2013), 49–57  mathnet  crossref  elib
    2. A. M. Gaisin, G. A. Gaisina, “Estimate for growth and decay of functions in Macintyre–Evgrafov kind theorems”, Ufa Math. J., 9:3 (2017), 26–36  mathnet  crossref  isi  elib
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:382
    Full text:94
    References:41
    First page:21

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021