RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2011, Volume 202, Number 10, Pages 55–86 (Mi msb7769)  

This article is cited in 3 scientific papers (total in 3 papers)

Existence ‘in the large’ of a solution to the system of equations of large-scale ocean dynamics on a manifold

A. V. Drutsa

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: A theorem is presented proving the unique solvability ‘in the large’ of the system of primitive equations on an arbitrary smooth oriented Riemannian manifold in a cylindrical domain. Namely, it is shown for an arbitrary interval of time $[0,T]$, in the $3$d domain $\Omega\equiv\Omega'\times[-h,0]$, where $h=\mathrm{const}$ and $\Omega'$ is a compactly embedded subdomain of a $2$-manifold $\mathscr{M}$, for any viscosity coefficients $\mu,\nu,\mu_1,\nu_1>0$ and initial conditions $\mathbf{u}_0\in\mathbf{W}_2^2(\Omega)$, $\displaystyle\int_{-h}^0\operatorname{div}\mathbf{u}_0 dz=0$, and $\rho_0\in W_2^2(\Omega)$, there exists a unique generalized solution such that $\partial_z\mathbf{u} \in\mathbf{W}_2^1(Q_T)$, $\partial_z\rho \in W_2^1(Q_T)$ ($z$ is the vertical variable) and the norms $\|\mathbf{u}\|_{\mathbf{W}^1_2(\Omega)}$ and $\|\rho\|_{W^1_2(\Omega)}$ are continuous in $t$.
Bibliography: 12 titles.

Keywords: primitive equations, ocean dynamics equations, nonlinear partial differential equations, a priori bounds, existence ‘in the large’.

DOI: https://doi.org/10.4213/sm7769

Full text: PDF file (728 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2011, 202:10, 1463–1492

Bibliographic databases:

Document Type: Article
UDC: 517.958
MSC: Primary 35A01, 35Q35; Secondary 35D30
Received: 02.07.2010

Citation: A. V. Drutsa, “Existence ‘in the large’ of a solution to the system of equations of large-scale ocean dynamics on a manifold”, Mat. Sb., 202:10 (2011), 55–86; Sb. Math., 202:10 (2011), 1463–1492

Citation in format AMSBIB
\Bibitem{Dru11}
\by A.~V.~Drutsa
\paper Existence `in the large' of a~solution to the system of equations of large-scale ocean dynamics on a~manifold
\jour Mat. Sb.
\yr 2011
\vol 202
\issue 10
\pages 55--86
\mathnet{http://mi.mathnet.ru/msb7769}
\crossref{https://doi.org/10.4213/sm7769}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2895550}
\zmath{https://zbmath.org/?q=an:1234.35281}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202.1463D}
\elib{http://elibrary.ru/item.asp?id=19066242}
\transl
\jour Sb. Math.
\yr 2011
\vol 202
\issue 10
\pages 1463--1492
\crossref{https://doi.org/10.1070/SM2011v202n10ABEH004195}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000298321500003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83755207593}


Linking options:
  • http://mi.mathnet.ru/eng/msb7769
  • https://doi.org/10.4213/sm7769
  • http://mi.mathnet.ru/eng/msb/v202/i10/p55

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Drutsa A.V., “O poryadke skhodimosti raznostnykh skhem dlya uravnenii dinamiki okeana”, Vychislitelnye metody i programmirovanie: novye vychislitelnye tekhnologii, 13:1 (2012), 398–408  mathnet  elib
    2. A. V. Drutsa, “A difference scheme for equations of ocean dynamics on unstructured grids”, Russian J. Numer. Anal. Math. Modelling, 29:3 (2014), 145–165  crossref  mathscinet  zmath  isi  elib  scopus
    3. G. M. Kobel'kov, “On the existence of a global solution of the modified Navier–Stokes equations”, Trans. Moscow Math. Soc., 77 (2016), 177–201  mathnet  crossref  elib
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:309
    Full text:45
    References:35
    First page:44

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018