RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2003, Volume 194, Number 11, Pages 17–64 (Mi msb779)  

This article is cited in 8 scientific papers (total in 8 papers)

Multidimensional Tauberian theorems for Banach-space valued generalized functions

Yu. N. Drozhzhinov, B. I. Zavialov

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: Multidimensional Tauberian theorems for the standard averages of tempered Banach-space valued distributions are stated and proved. These results enable one to determine from the asymptotic behaviour of the averages the asymptotic behaviour of the generalized function itself. The role of the asymptotic scale in these results is performed by the class of regularly varying functions. Special attention is paid to averaging kernels such that several of their moments or linear combinations of moments vanish. Important in these results is the structure of the zero set of the Fourier transformations of the kernels in question.
The results so established are applied to the study of the asymptotic properties of solutions of the Cauchy problem for the heat equation in the class of tempered distributions, to the problem of the diffusion of a many-component gas, and to the problem of the absence of the phenomenon of compensation of singularities for holomorphic functions in tube domains over acute cones.

DOI: https://doi.org/10.4213/sm779

Full text: PDF file (531 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2003, 194:11, 1599–1646

Bibliographic databases:

Document Type: Article
UDC: 517.5
MSC: Primary 46F12, 40E05; Secondary 35K05, 32A40
Received: 05.05.2003

Citation: Yu. N. Drozhzhinov, B. I. Zavialov, “Multidimensional Tauberian theorems for Banach-space valued generalized functions”, Mat. Sb., 194:11 (2003), 17–64; Sb. Math., 194:11 (2003), 1599–1646

Citation in format AMSBIB
\Bibitem{DroZav03}
\by Yu.~N.~Drozhzhinov, B.~I.~Zavialov
\paper Multidimensional Tauberian theorems for Banach-space valued generalized
functions
\jour Mat. Sb.
\yr 2003
\vol 194
\issue 11
\pages 17--64
\mathnet{http://mi.mathnet.ru/msb779}
\crossref{https://doi.org/10.4213/sm779}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2040664}
\zmath{https://zbmath.org/?q=an:1084.46029}
\transl
\jour Sb. Math.
\yr 2003
\vol 194
\issue 11
\pages 1599--1646
\crossref{https://doi.org/10.1070/SM2003v194n11ABEH000779}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000220189500002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-1642270355}


Linking options:
  • http://mi.mathnet.ru/eng/msb779
  • https://doi.org/10.4213/sm779
  • http://mi.mathnet.ru/eng/msb/v194/i11/p17

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. N. Drozhzhinov, B. I. Zavialov, “Quasi-asymptotics and spherical representations of generalized functions”, Doklady Mathematics, 70:2 (2004), 754–757  mathscinet  mathscinet  isi  elib
    2. Yu. N. Drozhzhinov, B. I. Zavialov, “Asymptotically homogeneous generalized functions and boundary properties of functions holomorphic in tubular cones”, Izv. Math., 70:6 (2006), 1117–1164  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. Khrennikov A.Yu., Shelkovich V.M., “Distributional asymptotics and $p$-adic Tauberian and Shannon-Kotelnikov theorems”, Asymptot. Anal., 46:2 (2006), 163–187  mathscinet  zmath  isi  elib
    4. Yu. N. Drozhzhinov, B. I. Zavialov, “Applications of Tauberian theorems in some problems in mathematical physics”, Theoret. and Math. Phys., 157:3 (2008), 1678–1693  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    5. Jasson Vindas, “Regularizations at the origin of distributions having prescribed asymptotic properties”, Integral Transforms & Special Functions, 22:4 (2011), 375  crossref  mathscinet  zmath  isi
    6. Pilipovic S. Vindas J., “Multidimensional Tauberian Theorems For Vector-Valued Distributions”, Publ. Inst. Math.-Beograd, 95:109 (2014), 1–28  crossref  mathscinet  isi
    7. A. L. Yakymiv, “A Tauberian theorem for multiple power series”, Sb. Math., 207:2 (2016), 286–313  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    8. Yu. N. Drozhzhinov, “Multidimensional Tauberian theorems for generalized functions”, Russian Math. Surveys, 71:6 (2016), 1081–1134  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:240
    Full text:81
    References:50
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018